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ABSTRACT

We present a new algorithm for chromotomographic image restoration. The main stage of the algorithm em-
ploys the iterative method of projections onto convex sets, utilizing a new constraint operator. The constraint takes
advantage of hyperspectral data redundancy and information compacting ability of singular value decomposition to
reduce noise and artifacts. Results of experiments on both in-house and AVIRIS data demonstrate that the algorithm
converges rapidly and delivers high image fidelity.

Keywords: Gerchberg-Papoulis, convex projections, singular value decomposition, image restoration, chromo-
tomography, spectrometry, hyperspectral.

1. INTRODUCTION
Chromotomography provides an estimate of image intensity as a function of position and wavelength. The

estimate is based not on a direct measurement of the image, but rather on evaluation of the two-dimensional
tomographic projections of the three-dimensional object related to the image via the X-ray transform [21]. The
objective of chromotomographic image restoration is to recover the complete three-dimensional spatial-chromatic
scene from chromatically sampled two-dimensional projections.

The restoration is obstructed by the so-called limited angle problem, generic to many computed-tomography
applications, or by the fact that due to certain physical limitations of the measuring instrument not enough data can
be collected [1,9,15,20]. Effects ofthis can be seen in the Fourier domain by appealing to the projection-slice theorem
[16]. The theorem states that the two-dimensional Fourier transform of the tomographic projection is equal to the
three-dimensional Fourier transform of the image evaluated on a plane through the origin in a direction perpendicular
to the projection beam. If a complete set of tomographic projections measured over a full range of angles is not
acquired, the union of Fourier transforms of all tomographic projections contains only partial information about
the three-dimensional Fourier transform of the object. This is reflected in a singularity of the system transfer
function (STF) matrix, which relates the tomographic projections with the object, thus obstructing computation
of the hyperspectral image by a direct method of inversion. Use of the pseudoinverse obtained via singular value
decomposition of the STF matrix offers the minimum norm least square solution; this estimate, however, suffers
from poor feature resolution and contains severe artifacts.

In an alternative approach, which bypasses the computation of the pseudoinverse, recovery of the unknown
object is achieved by utilizing a priori information about the image. Typically, an initial (often arbitrary) guess
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about the unknown object is made, which is then subjected to a sequence of corrections, forcing it to satisfy a
number of desirable characteristics. This sequence of corrections is applied repetitively until convergence occurs.
This technique is known as a method of projections onto convex sets. An example of this approach is the Gerchberg-
Papoulis procedure [17], where knowledge of the image spatial boundary and part of its Fourier transform is used to
recover the spectral image.

The main challenge of the method of projections onto convex sets is to identify constraint operators that can
be easily implemented and that lead to a rapid convergence. This is particularly important, when processing high-
dimensionality images, such as hyperspectral data cubes. Traditional constraint operators involving nonnegativity,
magnitude bounds, or finite support yield slow convergence and unsatisfactory performance. In this work we propose a
new object domain constraint. This constraint is based on the technique ofsingular value decomposition (SVD), which
is used to determine the dominant structure of the data, and to construct reduced-dimensionality approximations
by projecting the data onto a subspace that is consistent with image spectral characteristics. Results of experiments
demonstrate that the new constraint yields rapid convergence and leads to restoration of a significant portion of the
missing information. Since the new algorithm relies on data redundancy, a characteristic of many applications, it is
anticipated, that the SVD-POCS algorithm can be effectively applied to other data restoration problems.

The iterative technique proposed in this paper relies on SVD using its various aspects at three different stages
of the algorithm: computation of an initial estimate of the unknown image (robust matrix inversion), computation
of the object domain constraint (subspace identification) , and computation of the transform domain constraint
( compaction of information).

The paper is organized as follows: we present an algebraic formulation of the reconstruction problem (Section
2), review the POCS method (Section 3), introduce the new SVD-POCS algorithm (Section 4), and report results
of experiments (Section 5).

2. THE PSEUDOINVERSE

An imaging spectrometer reconstructs a three dimensional spatial-chromatic scene from a sequence of two-
dimensional images. The reconstruction can be accomplished in several ways, depending on whether multiplexing
of information is performed in either the spatial or chromatic domain or jointly. In {13] Mooney has proposed a
new computed-tomography image spectrometry technique (chromotomography). In his approach, the multiplexing
is accomplished by a rotating prism. As the prism rotates, each chromatic slice of the object cube follows a circular
path with the radius of the path determined by the prism dispersion. A sequence of spatial tomographic projections
g(, 'iS) is thus obtained, each tomographic projection being an integral of the three-dimensional spatial-chromatic
object cube f(, A) in the chromatic variable \

+00

g()=
f_oo

k(A — Ao)d, (1)

where = (x1 ,x2), = (cosq, sin4), 0 � < 2r, )o is the center wavelength, and k is a spectrometer constant
determined by the sensor focal length and prism dispersion [13] . This can be recognized as a three-dimensional X-ray
transform of f with integration performed over a line in direction kji,, ,where k determines the angle between the
integration line and the optical axis (Fig. 1). Taking the two-dimensional Fourier transform of (1) in the spatial
variable , we have

+00

g(, ) = foo e2<>(A_A0)f(, — 0)dA, (2)

where f(e, A) is the two-dimensional Fourier transform of f(, A) in ,and = ('f' ,') is the frequency variable.
Consider a version of (2), sampled at discrete chromatic bands and discrete angles [14]

g() = e2<Pm >(fo)f0(), (3)

275



276

-1: r'

Ptj

x2

I
I

III
I

I
I

I
I

I

tre,P7Sf'/

12,Ø)

CoJjeC its tothe Zty traSfor



where = (cos!, sinj!), 0 m < M, M � N, n = kA, n0 = U0, so

go()
gi()

I
= (4)

gi()
where the A() is an M x N matrix with elements

Am,n() = (5)

For brevity we write (5) as
g=Af. (6)

The existence and uniqueness of the solution of (6) depends on the rank of A, which is equal to the number of
independent rows of A. It is clear from (5) that A is ill-conditioned for many values of . A convenient tool for
evaluating the rank of a matrix is singular value decomposition (SVD) . The singular value decomposition of a matrix
A is defined as [2]

A=UEV1', (7)

where U and V are M x N and N x N matrices, such that

UHU = VVH VHV = 'N,

where superscript H indicates ilermitian adjoint, and E is an N x N diagonal matrix of singular values

= diag(oo, ..., UN_i),

such that co � Ui � ... � UN_i � 0. If A is non-singular, i.e. u0 Ui � ... � UN_i > 0, then a matrix inverse to A
can be computed as

Ai ViUH,
where elements of are found by inverting elements of J, and equation (6) has a unique solution given by

f = A'g.

If A is singular, i.e. there is K < N such that UO � . .. � UK_i > UK = ...= UN_i 0, so

E=K=diag(Uo,...,UK_1,O,...,O), (8)

then a direct inverse A1 cannot be obtained and (6) cannot be solved uniquely. Alternatively, the Moore-Penrose
inverse (a pseudoinverse) A+ [2] can be used to find a minimum length least square solution of (6). The pseudoinverse
of a matrix A is defined as

A=VEU", (9)
where the diagonal matrix is formed by replacing non-zero elements of with the reciprocal values

(10)

Multiplying both sides of (6) by A yields the pseudosolution

P=Ag. (11)
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In practice the recorded data g is contaminated by noise, i.e.

g=Af+n. (12)

In effect, small nonzero singular values of A result in instabilities. This can be seen by considering

Ag AAf+ An =VEV'f+ U'n).
If elements of E are close to zero, then elements of become very large and the filtered noise dominates restoration.
In order to balance loss of spectral resolution and noise amplification due to small singular values, a modified version
of (10) can be used, where small singular values close to noise variance are set to zero. Alternatively, a regularization
technique can be applied, which allows for gradual transition of singular values to zero [19]. Still, the direct method
of inversion, as implemented by (11), leads to artifacts in the estimate of the hyperspectral image, particularly in
scenes with a significant information content in the low spatial/high chromatic frequency regime. To improve fidelity
of the hyperspectral image, one needs to recover the nullspace information. This can be done by using a priori
information about the scene, such as finite extent, finite intensity range, energy bounds, etc., in the form of solution
constraints. If the pseudosolution does not meet these constraints, repetitive application of asequence of constraints
to the estimate leads to recovery of the nullspace information and to reduction of artifacts. The next section describes
this technique in detail.

3. PROJECTIONS ONTO CONVEX SETS

The method of projections onto convex sets (POCS) was introduced by Bregman [3] and Gubin e al [8] and
popularized by Youla and Webb [23], and Sezan, Levi and Stark [11,12,20], who also applied it to image restoration.
The method of POCS is an iterative algorithm for finding an image f' in the intersection of a given sequence of R
closed convex sets

Co flCr.

A subset C of 7-1, where 7-1 is a Hilbert space, is convex, iffor any two of its elements Ii and 12 it contains the element
I = itfi+ (1 — p)f2, where 0 ii 1. A subset C of 7-1 is closed, if the limit element of any sequence of elements in C
is contained in C. Associated with each closed (not necessarily convex) set C 5 a projection operator F,. : 7-1 —+C,.,
such that

If — PfII = minllf — hit, over all h e C,.,

so the nearest element to f in C,. jS P.f. If C,. iS convex, then P,.f is unique. Given (in general nonlinear) projection
operators P,. associated with closed convex sets C,. a sequence of images {fc } is generated by the recursive relation

fk+lpRpRlplfk (13)

The sequence {fk} converges to f' in C0 , i.e. for every I e 1-1

lim < fk f >< fi , f>.
k—#oo

Typical convex sets include sets of images restricted by spatial extent (optical field stop) CSL, known part of
the spectrum Csp, band-limitedness CBL, known part of the image Cjp, non-negativity, amplitude bound (intensity
range), 12 energy, etc. In the special case when only the two sets CSL and Csp are used, the POCS iteration reduces
to its famous special case, the Gerchberg-Papoulis algorithm for spectral extrapolation.

The Gerchberg-Papoulis algorithm is one example of the POCS method. Many other algorithms utilizing different
constraint sets can be formulated using the framework of POCS, depending on the side information available. This
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freedom to match an algorithm to an application is indeed one of the greatest advantages of signal processing
approach based on POCS. However, finding useful convex property sets also poses a challenge. The constraints need
to describe physical properties of objects with high degree of accuracy. The constraints have to be computationally
efficient. Finally, convergence has to be reached in a small number of iterations. The role of the algorithm designer
is to identify and implement signal property sets that best fulfill these requirements. Traditional property sets, such
as finite spatial extent, amplitude bounds, positivity or spectral limits usually yield slow convergence, partly because
the image properties associated with these sets often do not differ significantly from properties of the image estimate.
In this paper we introduce two new computationally efficient constraint operators, that lead to a rapidly converging
Pocs algorithm.

The first constraint set is determined by the data collection system, modeled by means of equations (6) or (11).
In either case the SVD of A leads to partition of the image into two components:

f=P+fN. (14)

The pseudoinverse f+ is the known component of the image to be recovered, corresponding to the non-zero singular
values of A. fN 5 the unknown image component, corresponding to the nullspace of A. We will use decomposition
(14) to form a constraint set of images with a known part equal to f+ . Since, as will be seen in Section 4, the
decomposition takes place in a space spanned by right singular vectors of the system transfer matrix A, we will call
this constraint a transform domain constraint.

The second, object domain constraint set is determined directly by the hyperspectral data. It is well known that
hyperspectral images are highly redundant, both in the spatial and chromatic variables. The redundant information
can be compacted by applying singular value decomposition to the data organized in a matrix form. The compacted
information can be extracted from the data matrix and applied as an estimate for the unknown image component
f N.

The following section describes both constraint sets in detail.

4. SVD-POCS ALGORITHM

As it was seen in Section 2, singularity of the system transfer matrix A leads to parameterization of the solution
space by the nulispace of A. Use of the pseudoinverse A+ yields a unique solution by discarding the nullspace
component. Since the pseudoinverse identifies the known data, it can be used to form a constraint set. Indeed, we
can write an iteration of the form

fk+l = PAf±PAPffk, (15)

where PA A+ A and PA I — A+A are the range and nulispace projection operators of A, respectively, and p/
is a projection operator associated with the object domain constraint. In short (15) can be written as

fk+1 = f++pApffk (16)
= pApffk (17)

where PA(f) = f++ PA(f') is a projection off' = pfC onto CA, a set of signals with a known component f+ =
The known part f is used in the iteration as the initial estimate f°. The unknown component f' is iteratively refined
by alternately applying projectors P1 and PA. Since

AA =VEKVH = VIKV' (18)

where EK is defined by (8) and 'K is a rank K identity matrix, the iteration (15) can be written as

fk+1 = VIKV''f + (IN — VIKVH)Pffk. (19)
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Equation (19) allows us to interpret the constraint projector pA as a linear filtering operator in a transform
space defined by the V matrix. To see that, premultiply (6) by +UH, that

U'g =IKVHf, (20)

and set y = E+UHg, and x = yHf (6) can now be expressed as a simple filtering operation

y IKX. (21)

In order to simplify the discussion in this section we have considered a noise-free data collection model(6) . The
more realistic "data + noise" model of (12) does not affect the derivation or the interpretation of the V-transform
constraint in a significant way. Computation of the pseudoinverse, as mentioned in Section 2, has to be modified by
setting small singular values to zero to filter out signal components excessively contaminated by noise.

The corner piece of our iterative algorithm for restoration of chromotomographic data is theobject domain con-
straint. The constraint is based on the observation that there exists a significant degree of correlation inhyperspectral
images [6,7,10,18]. Since data is redundant, part of the Fourier transform can uniquely represent the hyperspectral
image. In chromotomography, the conical shape of the missing data region implies that some information exists for
all spatial frequencies and that some information exists for all chromatic frequencies. Using redundancy present in
known parts of all horizontal planes (spatial information) and vertical lines (chromaticinformation) throughout the
three-dimensional Fourier cube, we can form an estimate of the unknown image part by forcing the missing data
values to be consistent with the known region of the image. Such a data processing approachcan be viewed as a
subsampling scheme. Since complete Fourier image data acquisition methods are inefficient and sensitive to noise,
chromotomographic subsampling combined with SVD-POCS postprocessing of the partially available data provides
a viable alternative, where both data collecting efficiency and image fidelity are increased.

The redundancy of a hyperspectral image can be assessed by computing the singular value decomposition of the
image organized as a two-dimensional spatial-chromatic matrix. Consider a data matrix

F=[fo,fl,...,fN_l]T, (22)

formed by taking as its rows the lexicographically ordered monochromatic slices f, of the object cube estimate.
Application of SVD to F

F = UEVT (23)

produces a new set of triples of singular values , spatial right singular vectors i ( eigenimages) and chromatic
left singular vectors (eigenchroma), forming the weighted outer product sum of (23). 1 The eigenimages and
eigenchroma are ordered in terms of decreasing singular values, or equivalently, decreasing information.

Typically, a few singular values of the SVD dominate the singular value spectrum (Fig. 2). These singular
values correspond to outer products having the richest information content. Since the outer products associated
with the lower order singular values represent noise and artifacts, an image can be fully represented by a few top
outer products. Specifying a priori the number of outer products that represent a hyperspectral image is similar in
spirit to constraining a two-dimensional image spatially, as in the Gerchberg-Papoulis procedure. The main factor
that differentiates the SVD-POCS algorithm object domain constraint from the Gerchberg-Papoulis algorithm finite
spatial extent constraint is that, in the former, information is constrained in an indirect way by selection of the image
"feature subspace" spanned by the dominant singular vectors of the data matrix, while in the later the constraint is
realized by selection of the image valid spatial indexes. An approach based on the former constraint is both efficient
and intuitively pleasing, since selection of the outer products has an immediate and profound effect on the data
and affects the entire information content of the spatial-chromatic image, rather than a single aspect of it, spatial
boundaries, whose importance is often uncertain.

1To distinguish the SVD of the data matrix F from the SVD of the system transfer function matrix A, we use italic letters
U, E, V for the former, and bold letters U, E, V for the later.
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Figure 2: Singular value spectrum of 'Jasper Ridge'.

Define projector pf = uILUT , where U is the eigenchroma matrix of the pseudoinverse F = F°, as in (23), IL
is a rank L identity matrix, and L is the constrained number of eigenimage-eigenchroma pairs of F. The image in
(23) can then be decomposed as

F=FL+FL', (24)

where

FL P1F. (25)

FL S a projection of F onto the "feature space" Ui. , represents the compacted image information and is used as
an estimate for the missing part of the spatial-chromatic data. FL' =F — FL is the orthogonal complement of FL,
which is a projection of F onto the "noise space" U —UL and represents noise and artifacts and is discarded.

Selection of the "feature space" dimension L is of great importance, since it bears on fidelity of the restoration
and convergence speed of the algorithm. One intuitive approach is to identify an abrupt change in the singular
value spectrum, and use it as a demarcation point for subspace decomposition. Initial investigations have shown
that this strategy can be fruitful. Optimal selection of the "feature space" dimension, convergence conditions and
computational complexity of the algorithm will be addressed elsewhere [4].

5. EXPERIMENTS

We have tested the algorithm on several synthesized and real datasets. Real datasets were either chromotomo-
graphic sequences of scenes acquired with a hyperspectral camera built in our lab, and passed through both stages of
the algorithm (inverse + iterations) , or sample AVIRIS data, preprocessed to mimic the loss of information occurring
in the inversion stage, and subjected only to the iteration stage of the algorithm.

To evaluate the performance of the algorithm on complex data, we used a sample AVIRIS image "Jasper Ridge".
We selected a 240 x 240 segment from the original 512 x 614 image and chose 64 consecutive frames (starting with the
44th frame) from the sequence of 224 to fit our processing environment. We preprocessed the initial set of images,
subtracting the low spatial frequency information by multiplying the set by AHA. We then applied the iterative
algorithm, using the first five eigenimages (representing most of the image energy) to form a reduced-rank data
matrix estimate.

Fig. 3 illustrates the progression of the first five eigenimages of the hyperspectral data through the different
stages of the algorithm: the original set (first column), the preprocessed set (second column) and the 20-th iterate
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(third column). The artifacts evident in the fourth and fifth eigenimage of the preprocessed data (and to a lesser
degree in the third eigenimage) largely disappear in the corresponding eigenimages of the 20-th iterate. Similarly,
the singular value spectrum of the iterate approaches that of the original image (Fig. 2). The rms error of the
20-th iterate of the first, second and third eigenimage yields a two-, four- and five-fold decrease, respectively, as
compared with the rms error of the pre-processed data. Even higher rms error reduction rates occur for the lower
order eigenimages.

The second test sequence was obtained with an infrared camera built in our laboratory [15]. The f/4 InSb camera
utilizes a 256 x 256 FPA, and operates in the 3-5 pm band at 60 frames per second with a 2 ms integration time.
The camera collects one frame of data for each of the 80 prism orientations, uniformly spaced over 2ir. We imaged
a target of opportunity (a building) from the laboratory window. The data was obtained on January 12, 1998, at
9.30 a.m. In order to minimize the effects of FPA nonuniformities and stray reflections from the rotating prism,
an additional sequence of data was recorded with the entrance pupil blocked. The blocked sequence was used to
perform a one-point nonuniformity correction on a 'frame by frame' basis.

Fig. 4 illustrates the top six eigenimages of the scene. The upper half of the figure shows eigenimages of
the pseudo-inverted data. All six eigenimages contain reconstruction artifacts in the form of high contrast halos
around the building. These halos are characteristic of the high-pass filtering and noise amplification introduced by
the pseudoinverse. The lower half of Fig. 4 illustrates the effect of the iterative algorithm on the artifacts; the
halos have been eliminated. Incidentally, the eigendecomposition demonstrates the importance of focal plane array
nonuniformities, which appear in the third eigenimage.

6. SUMMARY

The objective of this work was the design of an algorithm for improving the quality of the chromotomographic
image restoration. The objective was accomplished by introducing a novel object domain constraint based on the
inherent redundancy of the hyperspectral data and on the information compacting ability of singular value decom-
position. As a result, a highly efficient and effective image restoration algorithm for processing chromotomographic
images was obtained. It was demonstrated that the iterative algorithm is able to suppress artifacts and noise charac-
teristic of the pseudosolution, and to improve resolution of the distinct features present in the scene. The algorithm
allows one to monitor the progress of iteration in both: a quantitative (singular values) and a qualitative (eigenim-
ages) manner. The computational cost of the iteration was highly reduced by transferring the two-dimensional DFT
calculations to the precomputational stage [4] . All three aspects - performance, tractability and efficiency - indicate
that the new constraints are far superior to the standard constraints in processing of chromotomographic data.

The main issues to be investigated in the future are the design of an easily computable criterion for determining
the degree of hyperspectral model reduction, and validation of the assumption that high order eigenchroma are
shared by different spatial frequency regions of the hyperspectral image. The reliability of the model reduction
criterion and eigenchroma error estimates are going to impact the performance of the algorithm. Since both the
scene chromatic content and the relative importance of various spectral components can be highly dependent upon
the application, characterization of a wide range of hyperspectral scenes needs to be performed.
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Figure 3: The first five eigenimages of 'Jasper Ridge': the original AVIRIS sequence (first column), the
pseudo-inverse reconstruction (second column), and the twentieth iteration (third column).



Figure 4: The first six eigenimages of 'Hanscoin': the pseudoinverse (the upper half), and the tweiitieth
iteration (the lower half).
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