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ABSTRACT

We propose a new, time-frequency formulation of the Gerchberg-Papoulis algorithm for extrapolation of band-
limited signals. The new formulation is obtained by translating the constituent operations of the Gerchberg-
Papoulis procedure, the truncation and the Fourier transform, into the language of the finite Zak transform, a
time-frequency tool intimately related to the Fourier transform. We will show that the use of the Zak transform
results in a significant reduction of the computational complexity of the Gerchberg-Papoulis procedure and in an
increased flexibility of the algorithm.
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1. INTRODUCTION

The extrapolation of band-limited signals is encountered in many applications, including limited angle tomog-
raphy, radio astronomy; synthetic aperture radar, geophysical exploration and communication theory. In each
of these applications the problem is to recover the missing data in a one- or a multi-dimensional signal, given
a signal that is band-limited in some way. A well known technique suitable for the extrapolation problem is
the Gerchberg-Papoulis (GP) algorithm [6,9]. The algorithm is an iterative procedure in which one alternates
between the object domain and the Fourier transform domain while constraining the signal to its known values
and to a finite bandwidth. While this procedure is computationaly efficient and easy to implement (its core
computation is a DFT), it converges slowly and often requires computation of several hundreds iterations. In this
work we propose a new, Zak space formulation of the GP algorithm which significantly reduces computational
complexity of the original approach.

Denote by CV the N-dimensional space of N-tuples of complex numbers. A vector f € CV is a column vector

fo
=1
Consider a partially known signal f € CV. Typically only certain segments of f are known. Suppose N = LM

and segment f into L contiguous segments in C¥

fo
f=1: , ecM o0<i<L. (1)
fr—1
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For 0 < p < ¢ < L, suppose the known segments are

fp—la"'afq—l-
Denote by
N-1 )
fo = Fnfo = Z fne27rmn /N, 0<n' <N,
n=0

the Fourier transform of f.
Suppose f is bandlimited. Typically only certain segments of f are nonzero while the remaining segments
vanish. Segment f into M contiguous subvectors in C*

fo
f=|: , fmeCt, 0<m< M. (2)
far—1
For 0 < p’ < ¢' < M, suppose the known segments are

£_1, . Ey1.

The Gechberg-Papoulis algorithm is an iterative scheme for filling in the missing components of a signal f
using as a constraint in the object domain the known parts of f and as a constraint in the Fourier domain the
bandlimited information. Truncation operations play a major role in describing the procedure. Denote by t9?
the object domain linear operator which acts by the identity mapping on the segments fp_1, ..., f—1 and by the

zero mapping on the remaining segments in (1). In the same way, tﬁ;,’q/ is the Fourier domain operator which acts
by the identity mapping on the segments fy_1,...,fy_1 and by the zero mapping on the remaining segments in
(2). The Gerchberg-Papoulis iteration is given by

Y= O (- ) FR T F f, (3)

where the initial estimate f° = ¢7’?f depends only on the known parts of f, F1§1 denotes the inverse Fourier
transform, and I is the identity operator. Equation (3) can be expressed compactly as

' = PspPsLf*,

where Ppy = Fﬁltﬁ;’ql Fy and Psp = fO + (I — t5%) are constraint operators enforcing finite bandwidth and
known signal part.

The multiplicative complexity of a single iteration is 2Nlog2 NV, due to the forward and inverse Fourier trans-
forms. Since each iteration of the Gerchberg-Papoulis algorithm involves transition between the time and fre-
quency domains, it is natural to ask if an improvement could be made by considering signal extrapolation in a
joined time-frequency space. In this paper we consider a translation of the Gerchberg-Papoulis algorithm into the
language of the finite Zak transform, a time-frequency tool intimately related to the Fourier transform. We will
show that the finite Zak transform can be used to reduce the multiplicative complexity of the Gerchberg-Papoulis
iteration, by up to a factor of loga V.

In the next section we will review the relevant properties of the finite Zak transform.

2. FINITE ZAK TRANSFORM

The finite Fourier transform Fj f describes the frequency components of a signal f € CV. The finite Zak
transform provides a simultaneous encoding of signal and frequency information. It has its origin in several
applications [15] and is usually the first stage in a time-frequency analysis including ambiguity functions [13],
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Gabor and Weyl-Heisenberg expansions [1,3,4,5,13], and wavelet transform [10].

Suppose L is a divisor of N and N = LM. For f € C" define the finite Zak transform (FZT) Z f(a,b), by

L-1
Zrf(a,b) =Y fla+rM)e™t, 0<a<M, 0<b<L. (4)

r=0

If L = 1, the associated finite Zak transform is the identity mapping on C"V while if L = N, the associated finite
Zak transform is the finite Fourier transform Fpy. For an arbitrary divisor L of N, Z;f computes the finite
Fourier transforms of the M vectors in CL formed by striding by M through the signal f € CN.

The FZT calculus is governed by several rules that allow manipulation of signals in the Zak space. We state
several elementary results. Details can be found in [7].
The signal f can be recovered from its Zak transform by the inverse transform ZL_1

L-1
fla+rM) =27 (ZLf(a,b)) =LY Zpf(a,b)e ™k 0<a<M, 0<r<L. (5)
b=0

A fundamental property of the finite Zak transform is the relation between Zr f and Zyf.

Theorem 1 If f € CV andf is its N-point Fourier transform, then their Zak transforms Zr f(a,b) and Zp £ (b, a)
are related as follows

Zuf(a,b) = MZp, f(—b,a)e”2mab/N
Proof: See [2].

Theorem 1 asserts that 90 degrees rotation of the Zak transform Zj, f(a,b) and multiplication by the factor
e~2miab/N produces the Zak transform Zpf(a,b). This operation is equivalent to computing (Zy Fn Z;)(ZL f).
Since the procedure is logV less computationally expensive then the Fourier transform, algorithms requiring es-
timation of both: time and frequency properties of signals can be more conveniently implemented in the Zak space.

Truncation operations play a major role in many signal processing applications. Here we state a new result
which relates Zak transforms of a signal and its truncation.

Take f. € CM to be the r-th segment of f € CVV and form a signal fP¢ having zero segments as its first p
segments and as its last L — ¢ segments, and equal to f at the remaining segments. The Zak transform of fP? is

Z?%f(a,b) = § fla+rM)e*™ ™/l 0<a< M, 0<b<L. (6)
r=p—1
The following result describes the relation between ZP*? f and Z f.
Theorem 2 If Z7'? f(a,b) is the Zak transform of fp 4, and Zr f(a,b) is the Zak transform of f then
Z7f(a,b) =TP?Z1 f(a,b), 0<a< M, 0<b<L,
where T7*? is the Zak space trancation operator given by
g—1

L—1
TPZf(a,b)=L7" Y e2mm/EN" =2/l f(a,b), 0<a<M, 0<b<L.
r=p—1 b'=0
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z-1
Zrf = f
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Figure 1: Diagram of the Zak space translation of the truncation operation. Bold arrow marks the reduced
complexity operation of the new approach.

Proof: The result follows directly from application of (5) to (6).

In particular, for p = ¢ = 1, we have Zi’lf(a, b) = TIIJ’IZLf(a, b) = L1 Zf,;t Zpf(a,b"), and for p =1 and
q =L, we have Z}" f(a,b) = T}* Z1 f(a,b) = Z1f(a,b). o

Theorem 1 together with theorem 2 leads to a new efficient formulation of the GP algorithm, where all
constituent operations of the algorithm, i.e. signal truncation, bandlimitness constraint and domain translation
are performed in a singular space of the FZT. In each iteration of the Zak space description of the GP algorithm
we have to replace Zrf by ZD'?f as f varies over the iteration. The direct approach which is equivalent to
the Fourier transform approach computes the inverse Zak transform of Zr f, truncates and computes the Zak
transform of the truncation. The theorem replaces these steps by the computation of TF? on Zy f (Figure 1).

Table 1 summarizes computational complexity of the basic Zak space operations: the Zak transform, the
Fourier transform, and the truncation, where the action of Fj is assumed to require NlogN additions and
multiplications. The actions of ZyFyZ;! and TP are implemented using theorem 1 and theorem 2.

In the next section we give the Zak space formulation of the Gerchberg-Papoulis algorithm and demonstrate
the reduction in computational complexity achieved by the new algorithm.

3. GERCHBERG-PAPOULIS-ZAK ALGORITHM

Consider a signal f € CV, which we write as

fo
f=1: , iec™, 0<i<L. (7)
fr—1
Suppose
fo—15-- s fgm1
are the known segments of f, and set
o =tif.
f° depends solely on the known part of f and will be the initial guess in the iteration. Write f = Fy f as
. fo
f=|: , fnecl, 0<m< M. (8)
frr—1
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Suppose
fp’——la vy fq’-l

are the nonzero segments of f. f can then be recovered by the following procedure.

Algorithm (p, p’' > 1).

Precomputation:
e compute Z f°.
Iteration:

1. compute
Zut* = ZuFnf* = (ZuFnZ0)(ZLf*).

This step requires N multiplications.

2. compute
Zug® = T2 Zpt*

imposing the frequency domain constraint. This step requires N(¢' — p') + (N — L)(¢' — p’ + 1) additions
and 2N (¢’ — p’ + 1) multiplications for p’ > 1 and 2N (¢’ — 1) multiplications for p’ = 1.

3. compute
Zrg" = (ZLFy' 23 ) (Zug").
This step requires N multiplications.

4. compute
Zih* = (I - TP ZLg",

the Zak space truncation of the unknown samples. This stage requires N(¢ —p) + (N — M)(g—p+ 1)
additions and 2N (¢ — p + 1) multiplications for p > 1 and 2N (g — 1) multiplications for p = 1.

5. compute
Zp At = Zu 0 + Zoh*
imposing the known samples constraint. This step requires N additions.

Postcomputation: ’

e compute Z; ! (Zy f*+1).
The complete iteration can be expressed as

Zuf = Zof0 + (1= TP (ZLF R Zi TS Y (ZuFn 25 M) (20 ")
and requires
2N(¢'+q-p —p+1)—L(d —p' +1) - M(g-p+1)

additions and

2N(¢'+q-p' —p+3)
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multiplications for p,p' > 1 and
2N(¢'+q-1)

multiplications for p = p' = 1.

The diagram in Figure 2 compares the direct Zak space translation of the Gerchberg-Papoulis algorithm and
the present approach. In the standard, or the direct Zak space translation approach

2N(logL + logM)
multiplications are required to implement the two truncations as compared with
2N(q'+q-p —p+2)
in the present approach. The present approach has the advantage whenever
¢ +q—p —p+2<logL+log.
If p=1and p’ =1 then
2N(¢' +q-2)

multiplications are required to implement the two truncations, and the present approach has the advantage
whenever

q +q—2<logL+logM. 9)
If ¢ = ¢ = 1 then no complex multiplications are required by the present approach.

Inequality (7) determines the range of applications of the new approach in terms of small values of ¢ and ¢'.
In fact, the actual range of applications is much broader. It includes cases where either ¢, or L — ¢, and ¢, or
M — ¢, are small, i.e. when

min{q,L — q} + min{q',M — ¢'} — 2 < logL + logM. (10)

Example 1

Take p =1, ¢ =62, p =¢ =1, L = M = 64. Steps 1-3 and 5 are implemented directly as described by
the algorithm. The Zak space truncation of step 4 can be implemented either as (I — Tﬁlisz) or as Tgf %4 Since
the factor ¢ — p + 1 associated with the second form is much smaller, the second form is preferable. The iteration
requires no multiplications for truncation of step 2 and 4N multiplications for truncation of step 4. The total
number of multiplications required by the iteration is 6 N, which is half the number required by the direct approach.

When comparing the direct and the Zak space implementations of the Gerchberg-Papoulis algorithm, one has
to take into account possible efficiency improvements of the iteration, that can be accomplished in the original,
alternating space setting. These improvements can be made by taking advantage of the fact that if g—p or ¢’ — p’
is significantly smaller then M or L, then certain multiplications in computation of the forward or inverse DFT
can be omitted. Several techniques, generally referred to as FFT pruning methods, have been developed in the
past to take advantage of data sparsity to reduce complexity of the computation [8,11,12]. Here, we will consider
pruning of only the forward Fourier transform, since the computation of the forward transform limits the overall
efficiency of the pruned GP algorithm.

Table 2 provides a comparison between the multiplicative complexity of the pruning and Zak space methods
for a N-input points/q’ L-output points DFT. Here, we take p’ = 1 and consider the Zak transform on a square
M x L =+/N x+/N lattice. The first technique requires Nlog(q'L) operations (which is log(¢'L)/logN less then
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the N-input/N-output DFT), the second method requires N(2¢' — 1) operations for small ¢’ and N(2M —2¢' +1)
operations for large ¢’ (steps 1 and 2 of the algorithm).

The Zak transform method compares favorably with the pruning method for L > 22¢'~1 /q'. The superiority
of the Zak transform method becomes even more pronounced if finer resolution is required of the DFT output, i.e.
when ¢’ grows while the ratio ¢’ /M remains constant. As noted before, the Zak transform technique is effective
for both small and large ¢', while the multiplicative complexity of the pruning method approaches NlogN, as ¢’
becomes large.

An additional benefit of the Zak space method is in applications, where data samples are known on adjacent
intervals. This occurs, for example, in data storage and transmission, where unknown samples often exhibit a
scattered pattern [14]. Since truncation involves only pointwise multiplications, the computational complexity
of the iteration depends only on the number of points to be computed and not on their location. Regardless of
how the support of the time and frequency signals is defined, the steps 2 and 4 of the algorithm require 2L and
2M multiplications for every data point not restricted to the basic intervals [0, M), and [0, L), respectively. This
is in contrast to the pruning methods, which require consecutive samples to achieve reduction in computational
complexity [12].

4. SUMMARY

We have considered a new formulation of the Gerchberg-Papoulis algorithm, obtained by means of the finite
Zak transform. It was shown, that the Zak space signal extrapolation is more efficient then the direct GP method
by a factor of logN, and more efficient then the direct GP method combined with pruning by a factor of log(¢'L),
when ¢ = ¢’ = 1. A significant but smaller reduction in the multiplicative complexity is achieved when ¢ and ¢/,
or L — g and M — ¢' are small. In contrast to pruning, the new method is applicable in cases when the number
of non-zero Fourier transform coefficients is large in comparison with N, and when the signal is bandlimited to a
union of non-contiguous intervals. Since the Zak space method involves only pointwise multiplications, the GPZ
algorithm is easier to code and more suitable for implementation in a parallel processing environment then the GP
algorithm. Since the multidimensional finite Zak transform is well established [16], the Gerchberg-Papoulis-Zak
algorithm can be easily extended to a higher-dimensional case, where the computational advantage is even more
pronounced.

The GPZ algorithm proposed in this work assumes a complex valued signal, while many extrapolation prob-
lems involve real valued signals. In future work, we will introduce a new, real valued time-frequency transform,
which we will call the real Zak transform (RZT). We will show that the RZT leads to a real Zak space formulation
of the GP algorithm that is formaly similar to the approach presented here, but acts directly on a real signal
via the real Zak space relation between a signal and its Hartley transform, leading in effect to approximately a
fourfold reduction in the computational complexity of the GPZ approach.
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operation ’ additions multiplications

Zpor Z;* NlogL NlogL’
ZuFNZDY or ZLEN'Zy 0 N

TP, p=1 N(g—1)+ (N - M)qg 2N(q—1)

Y, p>1 N(g-p)+(N-M)(g—p+1) | 2N(g—p+1)

Table 1: Computational complexity of the basic Zak space operations.

N =1024
q'L 32 64 128 ... 896 960 992
pruning 5120 6144 7168 ... 10240 10240 10240
Zak 1024 3072 7168 ... 9216 5120 3072
N = 4096
qL 64 128 256 ... 3840 3968 4032
pruning 24576 28672 32768 ... 49152 49152 49152
Zak 4096 12288 28672 ... 36864 20480 12288
N =16384
qL 128 256 512 ... 13872 16128 16256
pruning 114688 131072 147456 ... 229376 229376 229376
Zak 16384 49152 114688 ... 147456 81920 49152

Table 2: Comparison between the multiplicative complexity of the pruning and Zak transform methods.
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Zr
ZLhk hk
Zpfo+

ZLfk-i—l

Figure 2: Diagram of the Zak space translation of the GP algorithm. Bold arrows mark reduced complexity
operations of the new approach. :
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