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ABSTRACT

A very simple and fast technique for clustering/segmenting hyperspectral images is described. The technique is based on the
histogram of 'divergence images : namely, single image reductions of the hyperspectral data cube whose values reflect
spectral differences. Multi-value thresholds are set from the local extrema of such a histogram. Two methods are identified
for combining the information of a pair of divergence images: a dual method of combining thresholds generated from 1D
histograms; and a true 2D histogram method. These histogram-based segmentations have a built-in fine to coarse clustering
depending on the extent of smoothing of the histogram before determining the extrema. The technique is useful at the fine
scale as a powerful single image display "summary" of a data cube or at the coarser scales as a quick unsupervised
classification or a good starting point for an operator-controlled supervised classification. Results will be shown for visible,
SWIR, and MWIR hyperspectral imagery.
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1. INTRODUCTION

With hyperspectral data, the clear distinction in principle among the terms clustering, segmentation, and classtfication begins
to blur. The desirability of clustering arises when masses of data points in multiple dimensions need simplification or
compression by grouping into "natural" clusters'. Segmentation is typically a preliminary stage in image analysis and divides
an image into meaningful or like regions2. Finally, classz)'lcation is remote material identification through spectral
signatures3. If we correctly cluster the hyperspectral data for a natural scene, and assign a common digital value to the pixels
of a given cluster, we create in effect a representative segmented image of the scene as a consequence of the spatial
correlations of the clusters. Further, given the tendency of the segmented regions to stem from the same or similar material,
we have also in hand a good starting point to a full classification of the scene.

A standard technique of image segmentation is to use the histogram of an image whose intensities reflect different regions to
determine multi-value thresholds.2 In this paper, we extend this technique to the task of clustering/segmenting from a
hyperspectral data cube. The histograms are generated from spectral divergence images whose values span the range of
spectral variability among the data pixels. We will describe several ways to reduce the data cube to such divergence images,
and techniques for establishing multi-value thresholds which use: a single 1-D histogram; a pair of 1-D histograms from two
divergence images; and a 2-D histogram from two divergence images. We will use three scenes in the visible, the SWIR and
the MWIR to illustrate our results.

2. THE TECHNIQUE

The basic steps in our clustering/segmentation process are:
1 . Reduce the hyperspectral data cube to a single image, referred to as a divergence image, whose values group pixels

according to spectral profile similarities.
2. Generate the histogram of the divergence image after suitable scaling or smoothing.
3. Determine a set of threshold values from the local extrema of this histogram and use to assign digital values to each pixel

based on its place in the histogram.
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We have identified several methods for generating such divergence images. One technique is to take the spectral distance of
each pixel from a reference spectral profile using some standard measure of spectral differentiation such as Euclidean
difference3. The reference profile could be that of a data pixel itself or that of a spectral eigenvector from a principal
component analysis. Alternately, one can use one of the principal component (PC) images (suitably scaled) as the divergence
image, thereby avoiding the use of a spectral distance measure. In Fig. 1, we show 4 divergence images, each scaled from 0
to 1000. Fig. la is based on the first eigenvector as reference profile and Euclidean distance as measure; Fig. lb is based on
the second eigenvector with spectral information divergence as a measure4: Figs. ic and id are directly the first and second

Fig. 1 a. Divergence image from first eigenvector and Euclidean Fig. lb. Divergence image from second eigenvector and spectral
measure. information divergence measure.

Fig. 1 c. First principal component image used as divergence image. Fig. ld. Second principal component image used as divergence
image.
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here to the PC images used as divergence images for reasons of simplicity and the advantage of the absence of a distance
measure.

The histograms of the PC image in Fig. ic is shown after smoothing with a narrow (Fig. 2a) and broad (Fig. 2b) Gaussian
filter. The local minima of these histograms delineate the boundaries between one cluster group and another and form the
basis of our multi-dimensional thresholding, i.e. pixels whose divergence values are bounded by two adjacent local minima
are assigned the same digital value. We find that the degree of smoothing generates a range of fine to coarse segmentations
(many to few discrete threshold values), as detailed by a later example (Fig. 9).

C')

>(0

Fig. 2a. Histogram
narrow Gaussian filter.

A segmentation based on a single divergence image may merge into one cluster or digital value a group of pixels which are
distinguished in another image. For example, a road at the bottom of the background foliage in the Fig. 1 images is better
discriminated in lb and id than in la and ic. We have identified two techniques for merging the information from two
divergence images to improve spectral discrimination. The simpler is a dual 1D procedure in which the thresholds of two
independent histograms from two divergence images are merged. The two sets of threshold values are plotted on a 2D grid
and the grid elements actually occupied by pixels are assigned a new (somewhat arbitrary) digital value. The simple
fictitious example in Fig. 3 demonstrates that the dual result chooses the finer discrimination from each image.

SECOND IMAGE

Fig. 3. The regions of a fictitious image are thresholded to 4 values in one independent segmentation (left) and 4 values in another
independent segmentation (right) which are merged into the dual 5 level segmentation (center).

The second method for using a pair of divergence images is fully two-dimensional. One generates a 2D-histogram based on
the dual values from the two divergence images of each pixel. The degree of smoothing of this histogram is indirectly carried
out by integer quantization in scaling the original divergence images into an integer range. The peaks (local maxima) in this
histogram are determined and then weeded so that neighboring peaks are replaced by a single representative peak. The final
set of peaks are then somewhat arbitrarily numbered from 1 to N and the digital label which is assigned to each pixel is the
number for the peak closest to the point of this pixel on the 2D-histogram.
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of image in Fig. ic after smoothing with a Fig. 2b. Histogram of image in Fig. ic after smoothing with a broad

Gaussian filter.

FIRST IMAGE MERGED (DUAL) RESULT
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Our final example is extracted from a HYDICE image in the SWIR provided by Spectral Information Technology
Application Center (SITAC). HYDICE is a pushbroom imaging spectrometer with 210 spectral bands, which cover the full
0.4 to 2.5 im spectral range. The array is a 320x210 element InSb array (Ref. 3, Chapter 1). The size of the extracted image
is 1 87 by 259 pixels and was taken over the CART/ARM Site Lamont, OK in early evening at 1 1,400'.

Following the same format as in the previous examples, we show the first two PC images used as the divergence image pairs
in Figure 7 and segmentation results in Figure 8. The image has a body of water (lower left), a set of panels, a road nearthe
top, and a region of plowed and unplowed wheat fields. The 40 level dual result (Fig. 8c) is based on 18 by 10 independent
thresholds from the 1D histograms of the first and second PC images. While similar generally to the 36 level 1D result, the
40 level dual result has a cleaner separation of the panels, particularly upper and lower halves of the larger panels. Again the
full 2D result is superior overall as far as separating the water from most of the panels (only one small panel and the upper
half of a large panel is assigned the same level as the water) and in differentiating realistically the textural difference of the
plowed and unplowed fields.

Fig. 5a. First PC image of MWIR hyperspectral data. Fig. 5b. Second PC image.
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Fig. 4a. Segmentation to 12 levels based on the first PC image Fig. 4b. Segmentation to 12 levels based on the second PC image
(Fig. ic). Data from a visible hyperspectral camera. (Fig. id).

Fig. 4c. Dual segmentation to 12 levels based on the first two PC Fig. 4d. Segmentation to 12 levels based on a two-dimensional
images. histogram from the first two PC images.
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Our final example is extracted from a HYDICE image in the SWIR provided by Spectral Information Technology
Application Center (SITAC). HYDICE is a pushbroom imaging spectrometer with 210 spectral bands, which cover the full
0.4 to 2.5 tm spectral range. The array is a 320x210 element InSB array (Ref. 3, Chapter 1). The size of the extracted image
is 1 87 by 259 pixels and was taken over the CART/ARM Site Lamont, OK in early evening at 1 1,400'.

Following the same format as in the previous examples, we show the first two PC images used as the divergence image pairs
in Figure 7 and segmentation results in Figure 8. The image has a body of water (lower left), a set of panels, a road near the
top, and a region of plowed and unplowed wheat fields. The 40 level dual result (Fig. 8c) is based on 18 by 10 independent
thresholds from the 1D histograms of the first and second PC images. While similar generally to the 36 level 1D result, the
40 level dual result has a cleaner separation of the panels, particularly upper and lower halves of the larger panels. Again the
full 2D result is superior overall as far as separating the water from most of the panels (only one small panel and the upper
half of a large panel is assigned the same level as the water) and in differentiating realistically the textural difference of the
plowed and unplowed fields.

Fig. 5a. First PC image of MWIR hyperspectral data. Fig. 5b. Second PC image.
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Fig. 6a. Segmentation to 34 levels based on the first PC image (Fig. Fig. 6b. Segmentation to 31 levels based on the second PC image
5a). Data from a MWIR hyperspectral camera. (Fig. 5b).

Fig. 6c. Dual segmentation to 32 levels based on the first two PC Fig. 6d. Segmentation to 34 levels based on a two-dimensional
images. histogram from the first two PC images.
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Fig. 7a. First PC image of HYDICE hyperspectral data.

Our techniques have a natural scaling from coarse to fine clustering/segmentation based on the degree of histogram
smoothing. For the 1D histograms this is implemented by the width of a Gaussian (or other averaging )filter, while for the
2D histograms, the smoothing is indirectly implemented by the effect of integer quantization in scaling a divergence image,
created as a set of floats, to an integer range. In Figure 9, we show the 2D segmentation of our HYDICE image to 39 levels
(as Fig. 8d), 23 levels, 16 levels, and 12 levels. As one goes from coarse to fine scale, the extra levels are utilized for more
subtle details of the wheat fields, while the degree of panel discrimination remains largely unchanged in going to the finer
scales (Our software is set up so that the user specifies the number of levels desired and a scaling parameter is iterated until
the desired number is reached).

Fig. 7b. Second PC image.
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4. CONCLUSIONS

We have described a set of simple and versatile techniques for clustering/segmenting hyperspectral images. The basic
concept is to create single images (divergence images) whose values reflect spectral similarity or difference and threshold
these images from the local extrema of their histograms. Methods of combining two independent divergence images have
been identified, with the full 2D histogram technique prefened. A natural control on the fine to coarse degree of
clustering/segmentation lies in the extent of histogram smoothing. The technique is useful at the fine scale as a powerful
single image display "summary" of a data cube or at the coarser scales as a quick unsupervised classification or a good
starting point for an operator-controlled supervised classification. Results were given for three images in the visible, MWIR,
and SWIR bands respectively; each result was based on the first two PC in the role of divergent images.

The work is very rich in possible future extensions. Many alternative methods for creating divergence images could be
explored. When merited by the quality of the data, one could fuse three divergence images by forming a 3D histogram and
proceeding in analogy to our 2D treatment. Issues of spectral discrimination should be explored on data sets with more
completely known ground truth than available with the present data.
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