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ABSTRACT 

 
Several approaches for segmenting hyperspectral data and automatically detecting unusual objects in natural scenes are 
discussed.  We demonstrate segmentations of hyperspectral imagery based on of the most significant principal 
components of the hyperspectral data cube.  Several applications of the segmented data are treated.  Digital 
morphological operations can be used to isolate segments that match target criteria.  Alternatively, background segments 
can be used to define background endmembers; pixels that are quantitatively spectrally different from the background 
can then be designated.  Analog morphological operations can then be used for clutter rejection and for the detection of 
objects of particular size and shape. 
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1. INTRODUCTION 

Imaging for military, industrial and scientific applications has undergone tremendous changes in recent years.  Beside 
the gradual improvements in image resolution, the use of multi-frequency data has increased1.  We now regularly gather 
hyperspectral data containing hundreds of spectral bands.  Cameras have been developed for use in the visible, 
Shortwave Infrared (SWIR), Midwave Infrared (MWIR) and Longwave Infrared (LWIR)2. 
 
Hyperspectral imaging promises greatly enhanced capability to detect targets.  It is well known that the segmentation 
stage of any automatic target recognition algorithm on standard two-dimensional images is one of the most difficult and 
important steps3 and segmentation of hyperspectral imagery is likely to be a key initial step in many procedures for 
anomaly/ target cueing or detection4. A poor segmentation will almost always foil an attempt to find the target.  When 
extended to hyperspectral data, effective segmentation followed by anomaly/target detection becomes even more 
difficult.  The data is inherently three-dimensional with a spectral axis complementing the two spatial dimensions.  The 
problem becomes even more daunting when we realize that the hyperspectral signature of a potential target can be 
dependent on the time of day, temperature, atmospheric conditions, etc..  Techniques that depend on prior knowledge of 
the background signatures (or endmembers) are not always feasible.  We believe that the most viable approach is to find 
objects of the right shape and size that are different than the standard background. In this paper, we consider such a 
process.   
 
The paper is organized as follows.  We review a previously presented algorithm that segments hyperspectral images on 
the basis of the two- or three-dimensional histograms of their principal components5.  Some modifications to improve 
our previous approach are mentioned but are detailed elsewhere at this meeting6. After exploring the application of 
morphology directly to the segmented (digital) images, we focus on the processing of our segmented images in tandem 
with the original hyperspectral data which produces an “anomaly gray-scale image”.  Such images, when subject to 
morphological filtering, prove to be powerful anomaly/target cueing algorithms. 
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2. 2D AND 3D HISTOGRAM-BASED SEGMENTATION 

The process of spectrally clustering pixels, which forms the basis for classifying hyperspectral data7,  is closely linked to 
segmenting the image because of the spectral/spatial correlation of natural scenes.  On the other hand, a powerful 
classical approach to segmenting single gray-scale images is by means of the extrema of their histograms8. In effect, our 
segmentations techniques5 combine the above approaches.  We form the histograms from image compressions of the 
hyperspectral data where the image values are similar for spectrally close pixels.  Of the several ways to do this5, we 
prefer a segmentation algorithm based on the use of the principal components (PC) of the hyperspectral datacube. (We 
will describe the method for two components, although the technique is easily extended to 3 or more dimensions.) A 
two-dimensional histogram is produced from typically the first two components.  Peaks (local maxima) in the histogram 
are located and labeled from 1 to N.  The histogram space is then templated to N levels by calculating the distance of 
any point in the histogram from each peak: that point is then labeled with the label of the “closest” peak. Each pixel in 
the data cube is then assigned the digital label of its corresponding point in the two-dimensional histogram and 
segmentation is accomplished. 
 
Some refinements on the above process are described in detail elsewhere6 and briefly summarized here as follows: 
1. The “closest peak” in the above scheme is no longer Euclidian but the peak influences in each dimension are 

modeled by Gaussian parameters estimated from the co-occurrence histograms of the individual PC’s.  In effect, 
this weights the influence of each component separately. 

2. In order to generate our histograms, we need to map the PC floating point values into integer bins.  The number of 
segmented levels (up to a point) increases with the chosen number of integer bins leading from coarse to finer 
segmentations.  We developed an interactive form of the algorithm where the user specifies a desired number of 
segmentation levels and an entropy measure is used  to guide a non-linear histogram mapping9 into that final set of 
integer bins that achieves roughly the desired number of levels.  

 
Our segmentation techniques have been tested on visible, SWIR, MWIR, and LWIR data and generate excellent results 
over many scenes.  Here, we give three examples in three different bands. The visible hyperspectral image used in Fig. 1 
was taken with an AFRL/Solid State Scientific Corporation chromotomographic hyperspectral imaging sensor (CTHIS).  
The camera design, performance and signal processing characteristics have been described previously2.  Figure 1 shows 
segmentations of 12 levels and 6 levels as well as the first two PC’s which generated the 2D histogram leading to the 
segmentations. 
 
The MWIR hyperspectral image of our next example (Figure 2) was taken also with an in-house imaging spectrometer.  
The imager used is the next generation of the prototype described in earlier work10. Again, our histogram segmentations, 
9 and 14 levels, are based on the first two PC.  (One can get very different segmentations here depending on the 
parameter used in the non-linear mapping into integer bins5.  The entropy guide mentioned acts to achieve a better 
balance between number of segmentation levels given to high and low spatial frequency regions.) 
 
Our final example is extracted from a HYDICE image in the SWIR provided by Spectral Information Technology 
Application Center (SITAC).  HYDICE is a pushbroom imaging spectrometer with 210 spectral bands, which cover the 
full 0.4 to 2.5 micron spectral range.7   The size of our extracted image is 238 by 256 pixels and was taken over the 
CART/ARM Site Lamont.  The segmentation to 13 levels is based on a 3D histogram from the first, third and fourth 
PC’s shown.  For clarity, we show this result in color; about 5 levels differentiate the panels. 
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Fig. 1a: First principal component of visible hyperspectral image. Fig. 1b:  Second principal component of visible hyperspectral 
image. 

Fig. 1c: 12 level segmentation of visible hyperspectral image. Fig. 1d: 6 level segmentation of visible hyperspectral image. 
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Fig. 2a: First principal component of MWIR hyperspectral 
image. 

Fig. 2b:  Second principal component of MWIR hyperspectral 
image. 

Fig. 2c: 9 level segmentation of MWIR hyperspectral image Fig. 2d: 14 level segmentation of MWIR hyperspectral image. 
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Fig. 3a: First principal component of HYDICE hyperspectral 
image. 

Fig. 3b: Third principal component of HYDICE hyperspectral 
image. 

Fig. 3c: Fourth principal component of HYDICE hyperspectral 
image. 

Fig. 1d: 13 level segmentation of HYDICE hyperspectral image. 
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3. APPLICATIONS 
 

3.1 Introduction 
We are aware of at least four uses of segmented Hyperspectral images: 
1. Application of regional constraints in improving computed tomographic data reconstructions11 
2. Preliminary classification 
3. Operator display 
4. Target cueing/detection. 
Here we concentrate on the last application and contrast two broad approaches to utilizing segmentations in target 
cueing/detection. 
 
For this purpose and in order to introduce a more quantitative approach than achieved by purely anecdotal examples, we 
base this section on four HYDICE data cubes taken of the (roughly) same scene at the ARM_site over three days in 
June, 1997 at 4:30, 5:30, 5:37, and 12:20 pm respectively.  Scenes 1, 2 and 4 were taken at about 6000 ft. and scene 3 at 
about 5000 ft.  The scene content is similar but simpler than that used in Figure 3 and consists of ploughed  farmland, a 
road , a triangular shaped region of trees, and three panels (taken as the targets).   
 

Fig. 4a: Sample signatures from HYDICE image. Fig. 4b:  Sample pairs of signatures from 3 panels of the 
HYDICE image. 

 
Figure 4a shows typical profiles of a panel, road and ground pixel, while 4b shows three pairs of panel pixel profiles.  
The almost matching pairs are from the same panel and exemplifies that for all scenes the main distinction between 
panels is a scaling constant.  Figure 5 shows segmentations to 6, 5, 8, and 5 levels of the 4 scenes respectively.  Note 
that many of the panels segment almost fully to one digital level but some, like the upper panel in Fig. 4b or the panels 
in Fig. 4c, are hybrids of two digital levels.  This has significant consequences for the approaches to be discussed. 
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Fig. 5a:  First HYDICE scene segmented to 6 levels. Fig. 5b:  Second HYDICE scene segmented to 5 levels. 

 
Fig. 5c:  Third HYDICE scene segmented to 8 levels. Fig. 5d:   Fourth HYDICE scene segmented to 5 levels. 
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Fig. 6a:  Morphological results of Scene 1 Fig. 6b:  Morphological results of Scene 2 

Fig. 6c: Morphological results of Scene 3 Fig. 6d: Morphological results of Scene 4 

Proc. of SPIE Vol. 4820     341



3.2 Direct use of (digital) segmentations 
For clarity, we should specify that by the term segment, we refer to all the pixels in a segmentation labeled with the 
same digital value.  For example in scene 4 (Fig. 5d), the “white” segment (digital level 5) forms the bulk of the lowest 
panel but many of the road pixels have the same segmentation level.  We use the term “segmented cluster” for a 
spatially contiguous region, such as the upper panel in scene 4, segmented to the same value, regardless if there are 
pixels elsewhere designated with this same value. 
 
The simplest approach is to apply size and shape criteria, i.e. morphological operations, directly to the segmentations 
and extract desired segmented clusters. For this purpose, we have explored combinations of openings and white hats12 
rectangular alignments or diagonal alignments.  To improve on the realism of our results, we assume here and in the 
following section that our knowledge of the target is confined to its maximum and minimum dimensions with unknown 
orientation.  For the panels in these scenes, we choose 4 and 16 pixels for the extreme dimensions and apply the 
following rectangular morphological operations: a 4 by 4 opening and pairs of 1 by 16 and 16 by 1 white hats (original 
image minus opening).  By appropriate fusion of these three operations, we retain segmented clusters that fit within a 
minimum window size of 4 by 4 and a maximum size of 15 by 15 pixels.   
 
The results of these morphological operations applied to the segmentations of Fig. 5 are shown in Figure 6 and reveal 
the problems with this approach.  If the panels form segmented clusters as in Fig. 5a and 5d, one recovers the panels 
almost in toto (Fig. 6a and 6d).  Problems are created by hybrid panel segmentations that result in the absence of panel 3 
in Fig. 6b and the recovery of just fragments of the panels in 6c.  A further problem is the lack of any magnitude 
differentiations in the recovered segmented clusters in Fig. 6.  Clearly, further operator intervention such as cross 
checking back to the original data cube would be needed to weed out the false alarms. 
 
The approach treated in the next section, which postpones the morphological operations until after an anomaly detection 
stage, ameliorates these problems. 
 
3.3 Use of anomaly images 
As shown above, the direct use of the segmented image to detect targets is dependent on the proper segmentation of the 
targets from the background.  When the target is composed of different types of materials or temperatures that are not 
compatible with each other, this is often not possible.  For example, a hot running tank will often have a hot spot for the 
engine with a cold chassis.  These may well segment into two or more segmented clusters.  In addition, parts of the 
target may be included by mistake into background segments.  Both of these results will lead to difficult if not 
impossible target detection if based on the digital segmentations. 
 
To circumvent these problems, we start with a few basic assumptions:  
1. The targets only occupy a small percentage of the overall image. 
2. The average signatures of the background segments accurately portray the signatures of the background pixels and 

are distinct from the signatures of the targets. 
 
With these assumptions, we construct an anomaly detector to assist in our target detection work.  We segment the image, 
as described above, and rank the segmented clusters by their size.  We assume that some large percent X of the pixels in 
the image constitutes background; X is typically 90 – 98% of the picture.  We then consider the largest segmented 
cluster; if it by itself consists of X% of the background, then this segment by itself defines the background.  If it does 
not, then we add the next segmented cluster in size.  We continue until we reach X% of the image.  When this is done, 
we have a number of segments defined as background (including all the pixels with the same digital values as the chosen 
segmented clusters); the other segments are defined as candidate target groups. 
 
The pixels comprising each segment can be averaged together from the original hyperspectral datacube to form an 
average pixel signature for that segment.  (Note that we are referring to the signatures obtained in the original data and 
not to the principal components data; subtleties in the original data can be characteristic of the “target” which are not 
immediately apparent in the principal component domain.)  Thus, the segments that comprise the background can be 
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characterized by a set of average hyperspectral vectors derived from these segments.  Similarly, the potential targets can 
be characterized by the average signatures of the (100 – X)% segments which remain in the image. 
 
Figure 7a shows again (reduced scale) our segmentation of scene 1 along with the result of the background cueing 
process (7b) just described.  Digital segments labeled 1, 2 and 4 (ground, ploughed areas, and road portion) form the 
three background segments and constitute 93% of the image.  The candidate 7% remaining  target pixels are shown in 
blue. To generate an anomaly detector, we now take each pixel in the image and compare it to the average background 
signatures.  
 

  
Fig. 7a:  Segmented results of Scene 1 Fig. 7b:  Background cueing result for scene 1; potential targets 

are in deep blue. 

  
Fig. 7c:  Anomaly image of Scene 1 based on Euclidian measure Fig. 7d:  Anomaly image of Scene 1 based on Angular metric 
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Fig. 7e:  Morphological result from Fig. 7c Fig. 7f:  Morphological result from Fig. 7d 
 
Two metrics have been tested for this comparison; in one we take the Euclidean distance between the pixel and the 
average signature; in the second, we evaluate the spectral angle that the pixel makes to the average signature in the N 
dimensional space.  For each metric, the value assigned to the pixel is the minimum value of the metric obtained with 
respect to any of the background signatures.  In this anomaly-detecting stage, pixels with high metric values will be 
those which don’t fit into the background. 
 
Figure 7c and 7d show a linear display of the two anomaly images (Euclidian and angular measures).  We next apply the 
same morphological operations detailed above to these gray-scale anomaly images.  (Note that in the digital domain, 
each digital level is treated as a separate black/white image in the morphological process; while in the gray-scale 
domain, the morphology is applied to the single analogue image.  Hence adjacent regions can interfere and modulate 
each other in the analogue mode.)  The results in 7e and 7f show the panels as well above the remaining pixels. 
 
We show the full corresponding results for scene 4 (the most challenging of the scenes) in Figure 8.  Here two segments 
of ground pixels constitute 96.4% of the background and segments 3,4 and 5 (blue in Fig. 8b) are the target candidate 
pixels.  Since the panels in this case are closer in magnitude to the background pixels than are other candidate target 
pixels, the Euclidian measure of anomaly fails (8c) but the angular measure still affords excellent results (8d and 8f). 
 
In Figure 9, we also show  partial results on scenes 2 and 3 for the angular measure.  The results are equally good.  For 
scene 3, 9c and 9d, the outer morphological dimension was increased to 18 pixels to accommodate the larger 
fringerprint; we note some self interference in this case.  
 
3.4 Final Comments 
The approach in the last section of generating an anomaly image cued by the segmented image appears to be a very 
powerful and robust technique. Consider the following cases that may have occurred at the background-cueing stage of 
this technique.  1. The target (e.g. the panel) is part of the (100-X)% of the target pixels and represents a segmented 
cluster in the original segmentation.  2. The target is also part of the (100-X)% of the pixels but is not a segmented 
cluster in the original segmentation but is a hybrid of non-background levels. 3. Portions of the target are segmented 
with the same levels as background segments. 4. The target was one of the chosen segmented clusters taken as 
constituting background.  (Note that we try to avoid this last possibility by not allowing X to approach too close to 
100%.) 
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Fig. 8a:  Segmented results of Scene 4 Fig. 8b:  Background cueing image of Scene 4 

  
Fig. 8c:  Anomaly image of Scene 4 based on Euclidian measure Fig. 8d:  Anomaly image of Scene 4 based on Angular metric 

  
Fig. 8e:  Morphological result from Fig. 8c Fig. 8f:  Morphological result from Fig. 8d 
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Fig. 9a:  Anomaly image of Scene 2 based on Angular metric. Fig. 9b:  Morphological result from Fig.9a. 

Fig. 9c:  Anomaly image of Scene 3 based on Angular metric. Fig. 9d:  Morphological result from Fig.9c. 
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Fig. 10a:  Scene 1 segmented to 19 levels Fig. 10b:  Morphological results of Fig. 10a. 
 
Of the four cases, the first is clearly optimal.  In that case, the target should be detectable by the segmenting and 
morphological procedures described in Section 3.2, as well as in our anomaly detecting process of 3.3.  The other three 
cases are likely to fail for the direct digital morphological method, while cases 2 and 3 are still quite viable for the 
anomaly approach.  For case 2, the target pixels have not influenced the background average pixel signatures and one 
can detect these pixels as being distinct from the background.  As for case 3, if the background pixel levels are much 
greater in number than the target pixels similarly labeled, then the particular features of the target pixels that distinguish 
them from the background may not enter the average background signature and anomaly detection will still work.  Only 
in the fourth case, where the target entered the background as its own segmented cluster does one expect difficulty in 
detecting the target. 
 
As one indication of this expected robustness, we resegment the first scene to 19 levels as shown in Fig. 10a.  The 
panels segment largely to two levels and direct application of morphology loses the middle panel and increases as well 
the number of false alarm fragments (not shown).  Our background cue image (also not shown) has the first 9 levels, 
98% of the pixels, taken as background.  Application of the morphology to the angular-measure anomaly image gives 
the excellent result in Fig. 10b, very similar to that shown in Fig. 7f. 
 

3. CONCLUSIONS AND FUTURE WORK 
 

We have presented in this paper several approaches towards developing an automatic segmentation and target 
acquisition system based on the use of hyperspectral imagery.  An initial segmentation of the datacube is achieved by 
clustering the pixels into groups with similar values in the first few principal components images and working with the 
corresponding 2 or 3D histograms. This segmentation can be used directly with digital morphological operations to 
select objects similar to the target.  In addition, average background endmembers are derived from the segmented 
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images; each pixel in the image is then evaluated based on its similarity to the background signatures, either with a 
Euclidian or angular anomaly metric.   Morphological operations can again be applied either to the analog results of the 
anomaly image to highlight areas of non-conformity with the background.  Considerable testing should be conducted to 
determine the ruggedness of this method.  
 
One avenue for additional research involves the anomaly detection approach.  Algorithms (e.g., the Orthogonal 
Subspace Projection) have been developed by Chang et al.13 to pick out the components of sample vectors that are 
orthogonal to a subspace defined by a set of background endmembers.  By coupling our method of generating 
background endmembers to these techniques and by then matching the results to target vectors, we should be able to 
develop more sophisticated metrics for classifying the pixels in our image. 
 
Our initial testing on Hydice images gives us reason to hope that our segmentation and anomaly detection methods may 
apply generally for many applications in other hyperspectral spectral regimes.   In particular, we are interested in 
studying the information content in infrared MWIR and LWIR data and the exploitation of hyperspectral sensors to 
detect targets in these images.  Since the MWIR data contains information both from the reflectivity of the objects as 
well as the material emissivity, its information content should be quite high with a large potential for exploitation with 
hyperspectral techniques.   Overall, the work presented in this paper points to several possible avenues of research in 
this rich field. 
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