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ABSTRACT

Further refinements are presented on a simple and fast way to cluster/segment hyperspectral imagery. In
earlier work, it was shown that, starting with the first 2 principal component images, one could form a 2-
dimensional histogram and cluster all pixels on the basis of the proximity to the peaks. Issues that we
analyzed this year are the proper weighting of the different principal components as a function of the peak
shape and automatic methods based on an entropy measure to control the number of clusters and the
segmentation of the data to produce the most meaningful results. Examples from both visible and infrared
hyperspectral data will be shown.
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1. INTRODUCTION

Hyperspectral imagery can be overwhelming given the large quantity of data obtained in both the spectral
and spatial domains. One way to overcome this deluge of information is to convert the data to its principal
components; in this way, an entire datacube may be summarized in a few images.

Often, one wishes to go one step further; one desires to reduce the entire data cube to a single segmented
image in which one of a small number of digital grey levels is assigned to each pixel. Last year1, we
showed that we could do this by taking two of our principal components images and process them as
follows:

1. Produce a two-dimensional histogram where the values of each axis are determined by one of the
principal components images.

2. Locate the N peaks in the histogram and assign a digital value from 1 to N.

3. Associate each pixel to one of the peaks based on the minimum Euclidian distance and use the
corresponding peak digital value as the segmentation level for that pixel.

In addition to the obvious extension to N-components, several questions arise when refining this algorithm.

1. First of all, how should we define a peak in the histograms when implementing the peak
determination stage? In our initial algorithm, we insisted that a peak be a maximum of at least
height 2 within its own three pixel by three pixel neighborhood . How will other definitions of a
peak affect the results?

2. How should we model the peak? If we assume that peaks are Gaussian, then the relevant
parameters needed are the mean and variances of the peaks in N dimensions. The means of the
peaks can be assumed to be the location of the maximum values of the peak. However, how can
we obtain the width of a peak?

3. When forming our histograms from the floating point values of the principal components, how
should the data be partitioned into bins? In our earlier work1, we show that the number of final
segmentation levels increases (up to a point) with the number of integer bins. Here we explore
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non-linear mappings from the principal component values to integers under the guidance of an
entropy criterion.

This paper will address these issues and refinements.

2. CLUSTERING MECHANISM

The best way to explain the clustering/segmentation technique is by an example. Let us start with a
datacube taken from our AFRL/Solid State Scientific Corporation chromotomographic visible/near infrared
hyperspectral imaging sensor (CTHIS).2 Fig. 1a is a single band image of the 74-band data cube. The first
two principal components are shown in Figs. 1b and 1c. These floating point continuous values must be
binned into some range of integers by a suitable scaling technique (see Section IV). If we plot the resulting
integer values into a 2-dimensional histogram, we get the image shown in Fig. 1d. If we then pick out the
peaks in these images (where a peak is defined as having at least two pixels and is the maximum in a 3 by 3
area), we obtain the image shown in Fig. 1e. We can weed out redundant maxima, not allowing any to be
within two pixels or less of each other; this is the result shown in Fig. 1f. A template is then built in which
every possible combination of pixel values for the first and second principal component images are
assigned to one of the peaks (Fig. 1g). The segmented image to 14 levels on the basis of this assignment is
shown in Fig. 1h.

Fig. 1a. Sample band from visible hyperspectral data
cube

Fig. 1b. First principal component of visible data cube

Fig. 1c. Second principal component. Fig. 1d. Two dimensional histogram.
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Fig. 1e. Peaks of two-dimensional histogram Fig. 1f . Weeded peaks of two-dimensional histogram

Fig. 1g. Template Fig. 1h. 14-level segmented image.

3. TWO-DIMENSIONAL CO-HISTOGRAM

We use the two-dimensional co-histogram to model our peaks; the co-histogram is one type of cooccurence
matrix.3 The co-histogram plots the association of grey-level values of a central pixel with the grey-level
values of its 3 by 3 neighbors. Take the abscissa and ordinate as the central and neighboring grey level
values. A value of 20 (for example) at coordinate (40,45) means that there are 20 occurrences in the image
of a pixel of grey level 40 having a pixel of level 45 as a neighbor. Regions in the image with different
noise characteristics form unique regions in the co-histogram. Note that the point (45,40) will also be 20
leading to mirror symmetry along the diagonal.

Fig. 2a and 2b show the resulting two-dimensional co-histograms, respectively, of the first two principal
component images from the data cube described in Fig. 1. The peaks in general occur along the diagonal.
This is reasonable, since pixels of like values will tend to group together. If we think of each line as
representing the statistics of a single grey level, we can see that certain levels have characteristic large
variations in their neighborhood, while others have smaller variations. The statistics of each line, i.e. the
variance of the values along the line, can determine the natural width of the changes that we can expect in
the neighborhood of these pixels.
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Fig. 2a. Co-histogram of the first principal component Fig. 2b. Co-histogram of the second principal component.

With this we can now address the second issue listed above. Let us start with the one- dimensional
problem, i.e. segmenting on the basis of a single component image. If we have two Guassian distributions
stemming from two peaks in the histogram to which a single pixel could belong, then the maximum
likelihood estimate for the correct class would be based on
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where A and B are the peak values of the two distributions, mA and mB are the means of the distributions
and σA and σB are the variances. A more convenient mathematical formulation is to assign pixel A to the
peak with minimum value for the experession:
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The variable A for each distribution is assumed to be proportional to the number of points at the center of
the peak on the N-dimensional histogram described in the first section. The mean mA is the value of the
peak location. The variance σA can be calculated as the variance of the distribution given for the central
pixel with grey level value mA on the co-histogram. A wider distribution, with larger values of σA and A,
favors assigning pixels with distant values. The narrower and smaller the peak, the more we will restrain
the distribution and demand that only pixels with closer/similar values should be allowed to join.

This approach increases in importance for 2D-histograms or greater. Assume that N equals two, i.e. we are
trying to segment the image on the basis of two component images. If one image is very noisy and the
other is not, we want to segment on the basis of the non-noisy image. This will occur automatically when
we consider our desired minimized Equation 2 generalized to two dimensions:
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Here the values of σ will be found from the co-histograms of each of the components separately. If the
second component image is much noisier than the first image, then the value of σA(2) will be much greater
than σA(1). The second component will not be as significant as the first component when the assignments
are considered.

To demonstrate this dramatically, we show a case of a clean first component image with a very noisy
second component image. Figs. 1b and 3a show the first and seventh principal component images,
respectively; Figs. 2a and 3b show the resulting co-histograms from these components. As can be seen, the
distributions in Fig. 3b are considerably wider than the distributions in Fig. 2a; hence the expression in
Equation 3 will be much more dependent on variations in the first component image than the second
component image. Fig. 3c is the resulting image using minimum Euclidian distance without considering
the factors in Equation 3; Fig. 3d is the image when incorporating Equation 3. The resulting improvement
is quite evident.

Fig. 3a. Seventh principal component Fig. 3b. Co-histogram of seventh principal component

Fig. 3c. Segmentation without taking into account the
quality of the principal components.

Fig. 3d. Segmentation using cohistograms to measure the
quality of the principal components.

4. ENTROPY-GUIDED MAPPINGS

We next address the third issue raised in our introduction: namely, how to map the floating point principal
component data into the integer bins needed to generate the histograms. This issue becomes critical when
the desired number of segmentation levels is small, say < 15, and the image consists mostly of slowly
spatially varying intensity backgrounds but with occasional significant rapidly varying intensity regions at
levels removed from the background. The IR hyperspectral image, whose first two principal components
are shown in Fig. 4a and b, where the building is such a high rapidly varying region, will be our example
for exploring this issue.
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In our initial formulation of the histogram segmentation technique1, we used linear scaling of the principal
component floating point numbers into a specified range of integer bins and iterated this range until the
user-desired number of segmentation levels was achieved. The only other user specified parameter was the
setting of the minimum number of pixels at a maximum location accepted as a peak (taken as two in our
earlier work). The effect of changing this peak definition is illustrated in Fig. 4c and d where segmentation
to 38 levels at peak min 2 is compared to peak min 5 with 22 levels; the change in peak min has removed
16 levels. Nevertheless, the overall segmentation results look similar. The consequence is to decrease the
number of segmentation levels assigned to the building while maintaining the same discrimination in the
background portions. However choosing the peak definition that gives the most pleasing segmentation is
both subjective and empirical and we prefer the alternative scaling technique described next.

In past research on the display of infrared imagery5, which treats mapping from high dynamic range
histograms (the “raw” histogram) to 8-bits (the display histogram), we introduced a non- linear mapping,
Histogram Projection (HP) which treats each occupied level of the raw histogram equally. This was in
contrast to the standard technique of Histogram Equalization (HE) that allots integer range in the display
histogram in proportion to histogram height in the raw histogram. The HE mapping tends to lump high
frequency spatial regions at sparsely occupied levels into a few display levels. We further introduced a
more generalized mapping, Plateau Equalization (PE), in which, by introducing a plateau or saturation level
into the raw histogram computation, we generate intermediate mappings to those of HP (plateau = 1) and
those of HE (plateau above the maximum in the raw histogram).

We have adopted the plateau mapping into the present scaling problem as follows. First, we linearly scale
the floating point numbers into a large integer range (typically 0 to 1000) that retains the basic statistics of
the initial floating point numbers. Then we employ PE to map from the “raw” histogram of 1000 to the
much lower integer ranges needed to form the histograms used in the segmentation techniques (ranges from
10 to 70 integer bins are typical for the 2D histograms.) To automate the process of choosing the plateau
level that gives the “best” result at a user-specified number of final segmentation levels, we employ an
entropy measure. Our experience is that the first component of a Principal Component analysis generally
provides a high contrast view of the scene with reasonable balance between high and low spatial frequency
regions. Assuming we desire segmentation to N levels, we linearly scale the first component to N levels in
order to compute the entropy E of this component by the expression:
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where fi is the fraction of pixels at level i. We next run our algorithm over a range of plateau levels,
typically 1, 5, 10, 15, 20, 25 and 30. At each plateau level, we generate the histograms produced by the
corresponding PE mapping and iteratively change the final number of integer bins until we obtain our N
level (or just below) segmentation. The entropy of the final segmentation is computed as above and the
preferred final result is that of the plateau level whose final segmentation entropy is closest to the starting
entropy of the first Principal Component.

In Fig. 4e and f, we show the results of this technique for the plateau = 1 result (close to linear scaling if the
principal component floating point numbers form a smooth continuum) as compared to the plateau level
result with the best entropy match. In Fig 4f with the plateau level equal to 30, the entropy guides us to an
image in which the fundamental segmentation of the image into field stop, sky, building, trees, and ground
is clear and similar to that in the first principal component image. In Fig. 4e with the plateau level equal to
1, the sky, trees and part of the ground are all combined into a single segment.
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Fig. 4a. First principal component of infrared image. Fig. 4b. Second principal component of infrared image

Fig. 4c. 38 level segmentation with a peak minimum
value of 2.

Fig. 4d. 22 level segmentation with a peak minimum
value of 5.

Fig. 4e. Segmentation at 12 levels inputting the data
linearly and without using the entropy metric.

Fig. 4f. Segmentation at 12 levels with non-linear
inputting of the data by using the entropy metric.

5. CONCLUSIONS

In this paper, we have described refinements to a method of segmenting hyperspectral images on the basis
of the most significant principal components. Two major refinements have been incorporated. Moving
away from a minimum distance assignment to peaks in our histograms, we statistically characterize each
peak by means of the co-histogram of the integer-binned principal components. Secondly, using the
technique of PE, we map the floating point numbers from their initial large integer mapping into the range
required for the histograms. The plateau level of choice is automatically chosen through the best entropy-
measure match between the final segmentation and the first component.

Several different applications can be considered, given this capability. Standard automatic target
recognition algorithms use segmented images to identify targets. Also, the larger clusters can be used to
generate endmembers that represent the backgrounds; this is often a first step toward detecting pixels with
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spectral anomalies that deviate from the standard background signatures. For further details on follow-up
applications, see Ref. 5.
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