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ABSTRACT

Two techniques for detecting point targets in hyperspectral imagery are described. The first technique is based on the
principal component analysis of hyperspectral data. We combine the information of the first two principal component
analysis images; the result is a single image display “summary” of the data cube. The summary frame is used to define
image segments. The statistics, means and variances, of each segment for the principal component images is calculated
and a covariance matrix is constructed. The local pixel statistics and the segment statistics are then used to evaluate the
extent to which each pixel differs from its surroundings. Point target pixels will have abnormally high values. The
second technique operates on each band of the hypercube. A local anti-median of each pixel is taken and is weighted by
the standard deviation of the local neighborhood. The results of each band are then combined. Results will be shown for
visible, SWIR, and MWIR hyperspectral imagery.
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1. INTRODUCTION

Many sophisticated techniques have been developed to detect point targets in natural backgrounds. The evolution of
detection and tracking algorithms used in Infrared Search and Track (IRST) systems, from single frame detection and
subsequent tracking to advanced multi-frame signal processing algorithms, has been described by Chan1. Typically,
spatial filters operate on individual frames producing candidate “hits” followed by a tracking stage2. In our earlier work
we developed spatial temporal filters for IRST.3-5 With the advent of multi- and hyperspectral cameras, we believe the
spectral domain will become a necessary component of many point target detection algorithms. In this paper we
describe two spatial filters for point target detection in hyperspectral imagery, the Principal Component Analysis (PCA)
algorithm and the Weighted Anti-Median (WAM) algorithm. Next we present our technique for generating Receiver
Operating Characteristic (ROC) curves, describe our data sets, and finally present results and conclusions.

2. PRINCIPAL COMPONENT ANALYSIS ALGORITHM

In designing this algorithm, we assumed that, although principal components are statistically independent from each
other over the entire image, there are segments where correlations between principal components still remain. The data
can be modeled as quasi-stationary adjacent segments. Most pixels within a neighborhood belong to the same segment;
only a few pixels are located on the boundaries between segments.

The first step in the PCA Algorithm is to obtain the first two principal component images of the data cube. Fig 1 shows
one frame taken from a MWIR data cube with 12 embedded targets. We created these embedded targets by simply
transplanting a bright pixel to other locations in the hypercube. Figs. 2a and 2b are the first and second principal
component images of the MWIR data. We combine the information from the first two principal component images,
using an algorithm described by Silverman6 et al., and the result is a single segmented image as shown in Fig. 2c. Our
inherently non-stationary hyperspectral data cube is now represented by quasi-stationary segments. Next, we evaluate
the means and variances of each segment for the two principal component images and construct the covariance matrix of
each segment.
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Fig. 1. MWIR image with 12 embedded targets

Fig. 2d shows the final result of our algorithm as an image whose pixel values S represent the extent to which it differs
from to its surroundings. The statistics of the pixel’s neighborhood and the statistics of its segment are used to weight
the result. Each pixel is assigned a value using the standard statistic for a two-dimensional gaussian7 as described in the
following equations.

The vector x has two values (x1, x2), x1 is the pixel value from the first principal component image and x2 is the pixel
value from the second principal component. Similarly, the vector m has two values (m1, m2), one for each of the
principal component images. The vector m is the local median; the median is generated using its 8 closest neighbors.
Therefore, (x-m) is the anti-median. The values of the inverse covariance matrix ΛΛΛΛx

-1 are taken from the “segment” to
which the largest number of neighborhood pixels belong. At least five of the eight neighboring pixels must belong to the
same segment for the pixel to be evaluated. At present, pixels that do not meet this criterion are not evaluated. Further
research is needed to estimate the statistics of these pixels, most of which fall on the borders of segments.

S = (x – m)T ΛΛΛΛ-1
SEG (x – m) (1)

x = (x1, x2) (2)

m = (m1, m2) (3)
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Fig. 2a. First principal component image Fig. 2b. Second principal component image

Fig. 2c. Segmented image Fig. 2d. Principal component analysis algorithm result

3. WEIGHTED ANTI-MEDIAN ALGORITHM

The weighted anti-median algorithm processes the entire data cube band by band, in contrast to our previous algorithm
which was run using the first two principal components. The first step of the weighted anti-median algorithm is to
calculate the local statistics of each pixel for each band. The median and standard deviation of each pixel is generated
using the 8 closest neighbors of the pixel. Each pixel in the image is given a value according to the following equation:

D = (xi – mi)/ σi (5)

The value xi is the value of the pixel in band i, mi is the local median and σi is the local standard deviation. The results
of applying Eq. (5) to the hyperspectral data illustrated in Fig. 1 are shown in Fig. 3. Fig. 3a shows a single band result
using just the numerator of Eq. (5) and Fig. 3b shows a single band result weighted by the standard deviation. The
division by the standard deviation definitely enhances the targets relative to the background. Note the difficulty the
algorithm has in detecting the lower right target. The target is on the road and the road pixels are not very different in
magnitude from the embedded pixel.
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Next we combine the results of each band, which makes a comparison between the results of the two algorithms
possible. Paglieroni and Perkins8 has suggested thresholding each image, band by band, and designating a pixel a target
if it is above the threshold in any band. In this paper, we will present two linear weighting combinations of the band
results. The first is a uniform weighting of all the bands, i.e., a sum. For the second method, we construct a quasi-
matched filter. We use as weighting coefficients the values for each band given by the first eigenchroma of the principal
components of the entire data cube. If the cube is composed of a unique signal (at different levels for each pixel but with
the same spectral shape) plus a low level of spectrally and spatially uncorrelated noise, the first eigenchroma would be
proportional to the signal. This would be appropriate for a matched filter. We recognize that these assumptions are
violated in most hyperspectral images; thus, this weighting algorithm should be considered as a rough approximation of
the optimum filter.

Fig. 3a. Single frame anti-median algorithm Fig. 3a. Single frame weighted anti-median algorithm

4. ROC CURVE GENERATION

To evaluate the algorithms over a wide spectrum of targets and target locations, we embedded point targets in our
hyperspectral data sets. We embedded targets as follows; we find one of the brightest pixels in the first principal
component image and designate it as target pixel y. Then we transplant a fraction f of this vector to the background
pixel b. Thus, the new pixel z replaces the background pixel b:

z = f y + (1.0 – f)b (6)

This process is done for each band in the cube. In the interest of visual clarity, f equals 1.0 in Figures 1-3:, i.e., the target
pixel replaces the background pixel. The values of f actually used to evaluate the algorithms ranged from 0.01 (1%) to
0.10 (10%) in steps of 0.01 (1%).

We compare the efficacy of the two algorithms for particular target strength by using classical ROC (Receiver Operating
Characteristic) curves. The technique is as follows (as described in Bar-Tal and Rotman as given in Ref. 3): First we
operate on the raw data, i.e., without any embedded targets. We evaluate for each pixel the algorithm being tested using
Eq. (1) for the PCA algorithm and Eq. (5) for the WAM algorithm. The results are summarized in what we call a no-
target histogram. Next we embed targets into every pixel location and evaluate the algorithm under study. This is done
independently for each pixel location (rather than simultaneously) so that surrounding pixels are not changed prior to the
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algorithm evaluation. The results are placed in a target histogram. For each histogram (no-target and target) the
following steps are taken. Each histogram is normalized and a cumulative probability histogram is calculated.
Subsequently one minus the value of the cumulative probability histogram is computed giving us the inverse cumulative
probability distributions for both the no-target and target cases. The x-axis of these distributions are the values of the
pixels from Eq. (1) or Eq. (5); the y-axis is the value of the probability of false alarm and the probability of detection
taken from the no-target and target-present inverse cumulative probability distribution, respectively, for that pixel value.
For each threshold in the histograms we obtain a pair of values corresponding to the probability of detection and
probability of false alarm; and using these pairs we generate our ROC curve.

To summarize, the steps to evaluate the ROC curves are as follows:

1. Run the algorithm on the data cube with an embedded target in every pixel location.
(The target is not in all the positions simultaneously; rather the result is obtained sequentially.)

2. Generate a histogram of the algorithm result for embedded targets.
3. Generate a cumulative histogram of the algorithm result for embedded targets.

(Normalize to number of pixels evaluated.)
4. Generate an inverse cumulative probability distribution (1.0-cumulative histogram), using result from step 3

(These are the Probability of Detection (PD) values.)
5. Run the algorithm on the original data cube in which no targets have been implanted.
6. Generate a histogram of the algorithm result for no targets.

(Use same scale as step 2.)
7. Generate a cumulative histogram of the algorithm result for no targets.

(Normalize to number of pixels evaluated)
8. Generate an inverse cumulative probability distribution (1.0-cumulative histogram), using result from step 7

(These are the Probability of False Alarm (PFA) values.)
9. Plot the Probability of Detection values (step 4) versus Probability of False Alarm values (step 8).

Every point on a ROC curve represents a possible position of the threshold for determining the presence of a target. To
generate a single metric for quantifying the ability of a particular algorithm to detect the target and reject false alarms,
we evaluate the area under the ROC curve minus 0.5. The value of 0.5 represents the area under the ROC curve for the
case where the target is not contributing to the pixel values, i.e. the target is completely indistinguishable from the
background. In such a case, for all thresholds, PFA would equal PD. Hence, the value of this metric (the area under the
ROC curve minus 0.5) measures the ability of an algorithm to discriminate target from background.

5. DATA DESCRIPTION

The algorithms under study assume the data can be modeled as quasi-stationary segments that are located adjacent to
each other. We assume that for most pixels the immediate surroundings of the pixel will belong to a stationary
background. Only a few pixels are located on the boundaries between segments. Much natural imagery in the visible
and the infrared can be described in this manner. The algorithms we developed are not band specific; we have found
these techniques give reasonable results over many scenes and wavelength bands. We will restrict our sample results to
the following three spectral ranges: visible, MWIR, and SWIR. The visible hyperspectral data was taken with an
AFRL/Solid State Scientific Corporation chromotomographic hyperspectral imaging sensor (CTHIS). The camera
design, performance and signal processing characteristics have been described previously9. The MWIR hyperspectral
image was also taken with an in-house imaging spectrometer. The imager used is the next generation of the prototype
described in earlier work.10 Finally the SWIR data is extracted from a HYDICE image provided by Spectral Information
Technology Application Center (SITAC). HYDICE is a pushbroom imaging spectrometer with 210 spectral bands,
which cover the full 0.4 to 2.5 µm spectral range. The array is a 320x210 element InSb array11. The size of the
extracted image is 187 by 259 pixels and was taken over the CART/ARM Site, Lamont, OK, in early evening at 11,400'.

246     Proc. of SPIE Vol. 4816



6. RESULTS

We next turn to analyzing the results of these techniques using data from three different bands. The results will be
shown pictorially and numerically. We will first analyze the MWIR image presented earlier in Fig. 1. Fig. 4a shows the
result of running the principal component algorithm on the MWIR data set without any embedded targets. Fig. 4b and
Fig. 4c show the result of the principal component analysis algorithm run on data sets with embedded targets of
strengths 2% and 8%, respectively. Fig. 4d, 4e, 4f are the analogous results for the weighted anti-median algorithm.

In Fig. 4 (and as well later in Figures 7 and 10), each image is scaled linearly such that the lowest value is displayed as 0
and the highest value is displayed as 255. Thus, no comparison can be made from image to image simply on the basis of
the brightness of a particular pixel. Rather, the significance of these pictures is in the relative brightness of the pixels
within each image: the brightness in the “no target” and “embedded target” images is related to the probability of false
alarm and detection, respectively.

The images with no targets effectively represent the deviations of normal pixels from their surroundings. In Eq. (1), if a
pixel’s vector equals the median vector, the value of S equals 0. There are many pixels for which this is true, and hence
Fig. 4a have many dark pixels. In Fig. 4d, derived from Eq. (5), the lowest pixel D will be caused by that pixel which
is most negative relative to its median. Assuming a normal distribution for the values of D in Fig. 4d, we would expect
very few pixels with this value and many pixels with value 0 (displayed as 128 out of 255). This explains the relative
paucity of pixels with the lowest value.

The insertion of higher fractions of the target causes a stronger differentiation between various segments of the image.
As the fraction rises, the change in the pixel value is greater than the natural noise present in the image. In Figs. 4b-4c
the addition of the target fraction causes all pixel values to change except for the area where target pixel was selected,
i.e., the building. Thus, in Fig. 4c and 4d, the buildings (and the road which is similar in spectral values) remain dark.
The sky, which is most dissimilar to the building, is the one most greatly effected by the presence of the target fraction.
Similarly, in Figs. 4d to 4f, the values D rise with the target fraction. The field stop surrounding the image is one of
the most uniform and darkest regions in the picture and hence is greatly changed between Figs. 4d to 4f. The building
becomes blacker since it maintains a value close to 0.
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Fig. 4a. PCA algorithm result - no target. Fig. 4d. Eigenchroma – WAM algorithm result - no target.

Fig. 4b. PCA algorithm result - 2% target. Fig. 4e. Eigenchroma -WAM algorithm result - 2% target.

Fig. 4c. PCA algorithm result - 8% target. Fig. 4f. Eigenchroma – WAM algorithm result - 8% target.
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The target pixel is a transplanted building pixel; for this reason both algorithms have trouble with pixels in the building.
Both algorithms are in essence anomaly detectors and in the building segment, this pixel is not anomalous. Table 1
summarizes the results for the algorithms when run on targets ranging from 1% to 10 %. The values in the table are the
areas under the ROC curve minus 0.5.

Table 1. MWIR Results.

Percent
Target PCA Sum WAM Eigenchroma WAM Sum AM Eigenchroma AM

1 0.205 0.352 0.395 0.130 0.355
2 0.231 0.443 0.461 0.244 0.436
3 0.331 0.470 0.479 0.331 0.464
4 0.433 0.481 0.486 0.391 0.475
5 0.461 0.486 0.489 0.429 0.481
6 0.487 0.488 0.491 0.453 0.484
7 0.494 0.490 0.492 0.467 0.486
8 0.497 0.491 0.493 0.475 0.488
9 0.498 0.492 0.494 0.481 0.489
10 0.498 0.493 0.494 0.484 0.490

The last two columns of the table represent the results of the anti-median before it is weighted by the standard deviation.
These columns show the necessity of weighting a pixel by the degree of noise in the surroundings. When comparing the
columns labeled Sum-Weighted Anti-Median and Eigenchroma - Weighted Anti-Median, the Eigenchroma column
gives better results. Finally, the results from the principal component analysis algorithm give lower values than either of
the weighted anti-median results. The improvement of the anti-median filter over the principal component analysis is
not due simply to the fact that the anti-median filter is only affected by “bright” targets while the principal component
method is affected by “unusual” (bright or dark) targets. We have found that the superiority of the WAM method is
maintained even if the absolute value of the difference is used instead of the simple difference as in Eq. (5). It appears
that there is an inherent superiority to processing each band of the hyperspectral cube and summing the results over the
bands as opposed to using one or two summations of the data, as is the case in the PCA algorithm. This points to the
benefits of using hyperspectral data in point target detection over broadband imagery.

Fig. 5 is the summary ROC curve generated for the 2% embedded target. Note the superior performance of the weighted
anti-median techniques at the low false alarm regions.
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Fig. 5. ROC curves for 2 % target embedded in MWIR image.

Next we will look at our visible hyperspectral data example. Fig.6a shows a representative image from the data cube.

Fig. 6. Representative frame from visible hyperspectral datacube. Embedded pixel extracted from equipment in center of
image.

Fig. 7 is a summary of the results for the visible data. It is arranged in the same way as Fig. 4, but the embedded targets
have strengths of 3% and 8%.
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Fig. 7a. PCA algorithm result - no target. Fig. 7d. Eigenchroma – WAM algorithm result - no target.

Fig. 7b. PCA algorithm result - 3% target. Fig. 7e. Eigenchroma – WAM algorithm result - 3% target.

Fig. 7c. PCA algorithm result - 8% target. Fig. 7f. Eigenchroma – WAM result - 8% target.
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Table 2 summarizes the results for the algorithms when run on targets ranging from 1% to 10 %. The values in the table
are areas under the ROC curve minus 0.5. Once again the weighted anti-median algorithm gives the best results. One
notable difference from the MWIR case is that the Eigenchroma weighted sum gives a better result than the sum in only
the 1% case. Fig. 8. shows the ROC curves for a 3% target. This result shows a slight improvement of the sum
weighted anti-median over the Eigenchroma sum weighted anti-median algorithm. The first Eigenchroma is not the
optimum weighting of the bands. The first eigenchroma would have been the optimum weighting if: 1. the target signal
were proportional to a single endmember and 2. if the noise in these bands after passing through the anti-median filter
were uncorrelated from band to band. We are engaging in additional research to theoretically model the optimum
weighting of infrared images after median filtering even if these assumptions are not fulfilled. The principal component
analysis algorithm is not performing as well as the weighted anti-median algorithm.

Table 2. Visible Results

Percent Target PCA Sum WAM Eigenchroma WAM
1 0.182 0.276 0.285
2 0.304 0.386 0.375
3 0.372 0.435 0.420
4 0.403 0.461 0.448
5 0.429 0.475 0.465
6 0.449 0.483 0.476
7 0.463 0.487 0.482
8 0.471 0.490 0.487
9 0.481 0.492 0.489
10 0.485 0.493 0.491

Fig. 8. ROC curves for 3% target embedded in visible data.
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Our final example is in the SWIR spectral range. A representative image from the data cube is shown in Fig. 9, followed
by the algorithm results in Fig. 10 for a 3% embedded target.

Fig. 9. Representative image from SWIR hypercube. Embedded pixel extracted from one of the panels in the upper left
corner of the image.
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Fig. 10a. PCA algorithm result - no target. Fig. 10d. Eigenchroma – WAM algorithm result - no target.

Fig. 10b. PCA algorithm result - 3% target. Fig. 10e. Eigenchroma – WAM algorithm result - 3% target.

Fig. 10c. PCA algorithm result - 8% target. Fig. 10f. Eigenchroma – WAM algorithm result - 8% target.
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Table 3 summarizes the SWIR results.

Table 3. SWIR Results.

Percent Target PCA Sum WAM Eigenchroma WAM
1 0.042 0.130 0.184
2 0.141 0.236 0.303
3 0.226 0.311 0.371
4 0.280 0.363 0.413
5 0.284 0.398 0.439
6 0.313 0.423 0.456
7 0.355 0.441 0.467
8 0.386 0.454 0.474
9 0.412 0.463 0.479
10 0.427 0.470 0.482

Once again the weighted anti-median result is the best. The Eigenchroma sum is a better result than just summing the
individual band results. The ROC curve for the 3% target is in Fig. 11. The shape of the ROC curve, its very slow rise
to a PD equal to one, indicates the difficulty of obtaining all of the targets. The image shown in Fig. 9 does not contain a
field stop (the border around the image). Since in the previous images the field stop was a particularly easy area to
detect the target, we would expect the ROC curves in Fig. 11 and the values in Table 3 to be lower.

Fig. 11. ROC curves for 3 % target embedded in SWIR image.

7. CONCLUSIONS

We have presented two methods to detect point targets in hyperspectral data. Results show that relatively low
percentage point targets are easily detected in three spectral regions. Our method of inserting fractional targets allows us
to evaluate the algorithmic performance without relying on actual test data.
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The weighted anti-median algorithm performed better in all cases tested. The superiority of the weighted anti-median
algorithm over the principal component analysis algorithm was not anticipated. Our implementation gave the principal
component analysis algorithm advantages over the anti-median filter. We eliminated from consideration all points that
were not internal to a single cluster. Since edge points are one of the main source of clutter leakage for point target
detection, we expected a superior result. Nevertheless, the anti-median method was superior in all cases. It appears that
processing of each of the bands individually provides valuable information in quantifying the presence of targets. This
demonstrates that hyperspectral data itself is extremely valuable; one should avoid compressing it too readily.

This work is very rich in possible future extensions. Additional research on both methods is desirable. The principal
component algorithm could be improved by using different principal component images. Sophisticated methods for
producing optimum (for point target extraction) principal component images should be investigated. When merited by
image quality, the method could be extended by employing the statistics from three or more principal component
images. The richness of the hyperspectral data cube is demonstrated very well by the results of the weighted anti-
median algorithm. A simple summing gave excellent results, and weighting the bands by the first eigenchroma gave
slightly better results in two out of three examples. Future work, both theoretical and experimental, is planned to
optimize the weighting function of the bands, which should yield even better results.
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