
Issues in segmenting hyperspectral imagery from histograms  
 

J. Silverman*a, S.R. Rotman**b, K.L. Duseau***c and C.E. Caeferc 

aSolid State Scientific Corp.  
bBen-Gurion Univ. of the Negev 

cAir Force Research Laboratory, Hanscom AFB; 
 

ABSTRACT 
 

In earlier work, we have shown that starting with the first two or three principal component images, one could form a 
two or three-dimensional histogram and cluster all pixels on the basis of the proximity to the peaks of the histogram. 
Here, we discuss two major issues which arise in all classification/segmentation algorithms. The first issue concerns the 
desired range of segmentation levels . We explore this issue by means of plots  of histogram peaks versus the scaling 
parameter used to map into integer bins.  By taking into account the role of Pmin, the minimum definition of a peak in the 
histogram, we demonstrate the viability of this approach.  The second issue is that of devising a merit function for 
assessing segmentation quality.  Our approach is based on statistical tests used in the Automatic Classification of Time 
Series (ACTS) algorithm and is shown to support and be consistent with the histogram plots.    
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1. INTRODUCTION 
 
At earlier conferences in this series, we introduced a new technique for segmenting hyperspectral imagery.1,2  
Segmentation was based on peaks in 2 and 3 dimensional histograms formed from principal components mapped into 
integer bins.  The algorithm evolved to a semi-automatic form in that the remaining user choice was the desired number 
of  digital levels in the segmentation and the minimum number of pixels present at a maxi mum value to declare a 
histogram peak. 
 
Two important issues remain unresolved, which form the focus of the present paper.  The first asks whether a fixed 
number (or narrow range) of segmentation levels is “recommended” by and extractable from the data cube itself.  A 
widely-used algorithm for segmentation/classification, the K-means algorithm3, requires the user to specify K pixels as 
initial seed centers.  A more recent algorithm, Automatic Classification of Time Series (ACTS)  4, features as its main 
advantage the automatic extraction of unique clusters, i.e. segmentation levels , as inherent to the algorithm.  A second 
and closely related issue is critical in comparing algorithms designed for the same purpose, in this case segmentation.  
Namely, in the absence of ground truth and wis hing to avoid a subjective user evaluation, can one design a merit 
function to assess the quality of a segmentation?  More specifically, given two segmentations from different algorithms 
at similar number of levels, or segmentations at different levels from the same algorithm, we seek a useful metric to 
favor one segmentation over another.  A metric which is useful in the second case (different levels from the same 
technique) would provide a link between our two issues. 
 
The main thrust of the present paper is to describe our initial efforts to address these two issues.  Our presentation is 
organized as follows: Section 2 reviews our segmentation algorithm; Section 3 describes our approach to the two issues; 
Section 4 presents results on a MWIR and SWIR data cube; and Section 5 is a summary and pointer to future work. 
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2. SEGMENTATION ALGORITHM 
 

The process of spectrally clustering pixels, which forms the basis for classifying hyperspectral data5, is closely linked to 
segmenting the image because of the spectral/spatial correlation of natural scenes.  On the other hand, a powerful 
classical approach to segmenting single gray-scale images is by means of the extrema of their histograms 6. In effect, our 
segmentations techniques1,2  combine the above approaches.  We form the histograms from the principal components 
(PC) of the hyperspectral datacube. (We will describe the method for two components, although the technique is easily 
extended to 3 or more dimensions.) A two-dimensional histogram is produced from typically the first two components.  
Peaks (local maxima) in the histogram are located and labeled from 1 to N.  The histogram space is then templated to N 
levels by calculating the distance of any point in the space from each peak: that point is then labeled with the label of the 
“closest” peak. Each pixel in the data cube is then assigned the digital label of its corresponding point in the two-
dimensional histogram space and segmentation is accomplished. 
 
Two refinements on the above process were described at last years’ conference2 : 
1. The “closest peak” in the above scheme is no longer taken as Euclidian but the peak influences in each dimension 

are modeled by Gaussian parameters estimated from the co-occurrence histograms of the individual PC’s.  In effect, 
this weights the influence of each component separately. 

2. In order to generate our histograms, we need to map the PC floating-point values into integer bins.  The number of 
segmented levels (up to a point) increases with the chosen number of integer bins leading from coarse to finer 
segmentations.  We developed an interactive form of the algorithm where the user specifies a desired number of 
segmentation levels and an entropy measure is used to guide a non-linear histogram mapping7 into that final set of 
integer bins that achieves roughly the desired number of levels.  

 
Representative results are shown in Figure 1 for  a MWIR hyperspectral image taken with an in-house imaging 
spectrometer.  The imager used is the next generation of the prototype described in earlier work8.  We show 
segmentations to 7, 10, 15 and 19 levels respectively, all based on the first two principal components.  A key specified 
parameter in the histogram technique is the minimum of pixels at a maximum location accepted as a peak, Pmin.  In the 
results of Fig. 1, Pmin is set at 2.  The increasing number of segmentation levels is  largely due to a division of building 
pixels into smaller segments.  Can we deem one of these similar-looking segmentations as better or more representative 
than the others? 



 
 

  
Fig. 1a.  First principal component of MWIR 
data cube.   
 

Fig. 1b.  Second principal component. 

  
Fig. 1c.  Segmentation to 7 levels. 
 

Fig. 1d.  Segmentation to 10 levels. 

  
Fig. 1e.  Segmentation to 15 levels. Fig. 1f.  Segmentation to 19 levels. 

 



 
 3.  APPROACH 

 
While the scaling into integer bins in principle provides a gradation of segmentations from coarse to fine, alternatively 
one could ask whether there is a fixed number (or narrow range) of distinct clusters (segmentation levels) inherent in the 
data.  Plots of the number of peaks in the histograms that generate our segmentations versus scale (number of integer 
bins) is our trial approach to exp lore this issue.  As a guide to interpreting these plots on full data cubes with many 
border regions, it is useful to start with simplified versions of the full data cubes composed of regions selected for their 
relative homogeneity.  Two such simplifications are shown in Figure 2.  The first simplified data cube (Fig. 2a) of 80 by 
120 pixels consists of four 80 by 30 pixel rectangular regions from the MWIR (74 bands) data cube of Fig. 1 selected 
respectively from the sky; the distant foliage; the closer tree foliage; and finally (as the bottom rectangle) a region of 
ground, road and tree.  There are five major clusters here and the plots of histogram peak number versus scale levels 
(Fig. 2c) does indeed level off at 5 starting with Pmin of 6-10.  At lower Pmin, smaller segments split off from border areas 
or from the tree foliage which has considerable texture. 
 
We increase the realism of our example in the 120 by 120 image (Fig. 2b) which has appended to the Fig. 2a image a 40 
by 120 pixel swath centered on the building including additional sky, distant foliage, and tree areas.  We have added one 
or more major clusters, depending on Pmin, and the corresponding plot  (Fig. 2d) shows level regions between 6-8.  We 
conclude from these semi-simulations that this plotting approach is very promising but that the roles of Pmin and border 
pixels needs to be taken into account.  The results on the full original data cubes are treated in the next section. 
 

  
Fig. 2a.  Band 16 of an 80 by 120 pixel simplified version  
of the Figure 1 image. 

Fig. 2b.  Band 16 of a 120 by 120 pixel simplified version of 
the Figure 1 image. 
 

  
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 2c. Number of histogram peaks or segmentation levels 
versus scale at 4 values of  Pmin for the image in 2a. 

Fig. 2d.  Corresponding plots for the image in 2b. 



 
Our approach to the second issue, namely a merit function to assess segmentation quality, is based in part on the ACTS 
algorithm4.  The ACTS method works in the context of a descending tree structure in which each parent cluster is 
potentially spilt into two child clusters based on the scatter in the parent cluster.  After iterating this split to a specified 
degree of stability, one applies two statistical tests to the child clusters to ratify or reverse the potential split.  The two 
tests, which form the basis of our merit function, are as follows. 
 
In test 1, the centers of each child cluster, X1 and X2, are computed as average profiles of the pixels assigned to each 
cluster and XP, the average profile of the parent cluster, is also computed.  One can then compute F, the fraction of the 
pixels in the total whose Euclidian distance is closer to XP  than to its nominal child cluster X1 or X2.   Lower values of 
this  fraction favor the split. 
 
In test 2, the standard deviations σ1 and σ2 of each child cluster, (summed over all the bands), as well as the parent 
cluster σP , are computed and the ratio σr of (σ1 + σ2)/ σP  is computed.  Again lower values favor the split.  In the 
implementation of the ACTS algorithm, upper bounds are set for these test values for accepting or negating a potential 
split.  We propose to apply these two tests to all pairs of clusters (segments) in a final segmentation, generated by 
whatever algorithm, as the basis of a possible merit function.  Specifically, for each of the N (N-1)/2 pairs of an N-level 
segmentation, we compute F and σr and then compute the averages and the maximum over the pairs: Faver, Fmax, σaver and 
σmax as possible metrics. 
 
To digress slightly, we should mention that the pair of tests used in the ACTS algorithm does have a built-in bias against 
pairs with a large disparity in size.  If say N1 >> N2, then XP  ≈ X1 and high values of F and σ result.  One can remove 
such a bias by weighting each pixel in the smaller N2 cluster by N1 ÷ N2.  In effect, this treats each child cluster as a 
probability distribution stemming from equal numbers of pixels.  A merit function based on such a bias removal has 
been tested and gives much less useful results than the results based on the tests in the form used in the ACTS algorithm.  
Hence, we present only the latter results. 
 
For simplicity, we show the average metric values, Faver and σaver hereafter called F and σ; the corresponding maximum 
metrics generally track these averages.  In Figure 3, we plot the average metric values at Pmin  = 2 and 14 for the image in 
Fig. 2a (Figs. 3a and 3b) and for the image in Fig. 2b (Figs. 3c and 3d).  The upper dotted curves are the average σ 
metric and the lower solid curves are the fractional F metric.  The dark lines in Figure 3 are the corresponding plots at 
Pmin  = 2 and 14 from Figure 2 of the number of segmentation levels. The results show promise for these simplified data 
cubes.  We find a minimum in the merit values at 5 segmentation levels and minor oscillations thereafter (Fig. 3a) and a 
flat broad minimum in both metrics corresponding to the segmentation plot  (Fig. 3b).  The picture is less clear in Figs. 
3c and d.  The latter (Pmin  = 14) has metric minima at five and six clusters and generally mirrors the segmentation 
number plot but the former (Pmin  = 2) has a gradually decreasing σ metric and a very flat F metric.  Our proposed merit 
function looks promising, but again careful interpretation as a function of   Pmin will be needed. 



 
  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3a. Metric plots of Fig. 2a versus increasing scale at 
Pmin  = 2.  Dark curve is number of segmentations. 
 

Fig. 3b. Corresponding metric plots of Fig. 2a at Pmin  = 14.  
Dark curve is number of segmentations. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3c. Metric plots of Fig. 2b versus increasing scale at 
Pmin  = 2.  Dark curve is number of segmentations 

Fig. 3d. Corresponding metric plots of Fig. 2b at Pmin  = 14.  
Dark curve is number of segmentations. 

 
 
 

4. RESULTS 
 
The two kinds of plots which address the two main issues of this paper, histogram peaks versus scale (segmentation 
number) and metric function versus scale, are plotted in Figure 4 for the full data cube of the Figure 1 MWIR image.  If 
one compares Figs. 4a with 2d, one notes that the second simplified image is quite similar to the full cube in the leveling 
off at high Pmin indicating 6-8 major clusters.  Fig. 4b is the modified plot when a spectral edge detector is employed to 
identify the top 9.5 % edge or border pixels  and eliminate them from the histogram; one sees that the segments in the 
Pmin  = 2-6 segmentations contain border pixels but the large scale segments show little influence from their presence.  
The general appearance of the metric plots of the full MWIR data cube (Figs. 4c and 4d) is similar to but smoother than 
those of Figs. 3c and 3d.  For Pmin  = 2, the metrics reach low values at about 7-8 clusters and thereafter oscillate for the F 
metric and decrease gradually for the σ metric.  The plots in Fig. 4d mimic the saturation at 5-6 segmentation levels of 
the Pmin  = 14 plot. 
 



 
  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4a.  Number of histogram peaks or segmentation levels  
versus scale at 4 values of Pmin of Fig. 1. 

Fig. 4b.  Plot of Fig. 4a with 9.5% border pixels removed. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4c. Metric plots of Fig. 1 at Pmin  = 2. 
Dark curve is number of segmentations. 

Fig. 4d. Metric plots of Fig. 1 at Pmin  = 14. 
Dark curve is number of segmentations . 

 
Turning to the SWIR HYDICE image9 in Figure 5, we see that the histogram plot indicates 7-8 clusters and the metric 
plots again at Pmin  = 2 and 14 are quite similar in character to those in the MWIR image (Figs. 4c and 4d) and are 
consistent in preferring 7-8 levels (although the trend in the σ metric at Pmin  = 2 of gradual decrease with increasing 
segmentation levels is present). 
 



  

 

Fig. 5a.  Band 8 of a 260 by 300 Hydice image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5b.  Segmentation to 5 levels of Hydice image  

Fig. 5c. Number of histogram peaks or segmentation  
levels versus scale at 4 values of Pmin for the Hydice image. 

Fig. 5d. Metric plots for the Hydice image at Pmin  = 2.  
Dark curve is number of segmentations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Fig. 5e. Metric plots for the Hydice image at Pmin  = 14. 
Dark curve is number of segmentations. 

  

 



A second potential use of our merit function is to compare segmentations at the same number of levels of different 
algorithms .  In Figure 6, our histogram-based segmentations are compared to k-means segmentations at 7 levels for the 
MWIR image (6a and 6b) and at 6 levels for a SWIR hydice image (6c and 6d) similar to that used earlier.  The K 
starting seeds are from a randomly chosen pixel in each segment of the histogram-based segmentation.  The final results 
(6b and 6d) are after 15 iterations of the k-means process3.  Given that the histogram-based results are here based on two 
PC values per pixel, while the k-means results use full band profiles per pixel (74 bands for the MWIR and 210 for the 
SWIR), and further given that the k-means algorithm iterates an improved Euclidean compactness for each cluster, one 
would expect lower (improved) metric values for the k-means.  Indeed this is the case for both images and both the F and 
σ measures. 
  

  
Fig. 6a.  Histogram segmentation to 7 levels of MWIR image. 
Average metrics are: F = 0.27       σ = 1.73 

Fig. 6b.  K-means segmentation using a random pixel in each 
segment as starting center.  F = 0.21       σ = 1.22 
 

  
Fig. 6c. Histogram segmentation to 6 levels of SWIR image. 
Average metrics are: F = 0.34       σ = 1.60 
 
 

Fig. 6d. .  K-means segmentation using a random pixel in each 
segment as starting center.   F = 0.26       σ = 1.46 



 
 

5. CONCLUSION 
 
We have described our initial approaches to and evaluations of two major issues in classification/ segmentation 
algorithms . The first issue concerns the desired number of segmentation levels  which is explored by means of plots of 
histogram peaks versus the scaling parameter used to map into integer bins.  By taking into account the role of Pmin, the 
minimum definition of a peak in the histogram, we have demonstrated the viability of this approach as seen by the roll-
off in the number of segmentation levels versus scale plots with Pmin as a parameter.  The second issue is that of devising 
a merit function for assessing segmentation quality.  Our approach is based on statistical tests used in the ACTS4 
algorithm.  The two tests compare a parent cluster of pixels to a pair of child clusters formed from the parent as to the 
fraction closer to the parent cluster center (F test) and a ratio of standard deviations of the child clusters divided by the 
standard deviations of the parent cluster (σ test).  Our candidate merit function treats each pair of segments in a given 
segmentation as a two-child/parent group and computes the test values.  The final metrics are the average F and σ over 
all pairs. 
 
Although the merit function looks promising, several problems emerge.  The σ metric tends to fall gradually at larger 
numbers of segmentation levels (see Figs. 3c, 4c, 5d) and the F metric is generally rather flat after some fixed number of 
levels.  We have also compared two segmentations at the same number of levels with the merit function (Fig. 6) with 
reasonable results. 
 
Further efforts to test and possibly modify the merit function will focus on segmenting hyperspectral imagery having 
ground truth available and will compare histogram-based segmentations with those from the k-means, ACTS algorithm, 
and a variation on the ACTS algorithm10.     
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