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ABSTRACT 
 
A recently-developed technique of histogram-based segmentation of hyperspectral data allows for a plethora of 
segmentations.  The user can specify the desired number of levels of segmentations, minimum number of pixels 
defining a peak, and degree of non-linearity in mapping from principal component floating values to histogram bins, 
all of which affect the derived segmentation.  In the present work, we seek to extend previous work which arrives at 
a  small range of clusters or segmentation levels from the image itself.  We seek within this range to find "better" 
segmentations or possibly a unique representative segmentation.  The method employed to achieve this goal starts 
with an over-fine segmentation, i.e. more segmentation levels than needed, and uses quantitative metrics to measure 
the "quality" of that segmentation and to guide a compression into a reduced segmentation.  If the method has merit, 
different starts should compress down into comparable segmentations.  Therefore a measure to establish the 
similarity of two or more segmentations was developed. Different quantitative metrics were studied and several 
modes of compression were examined.  Some impressive results are presented but the methods are still not robust 
with respect to segmentation starts and are image dependent as to the best modes of compression. 
 
Keywords: Hyperspectral images, histogram-based segmentation, segmentation levels, compression, segmentation 
metrics, similarity matrix, K-means algorithm 
 

1. INTRODUCTION 
 
A new histogram-based segmentation of hyperspectral data was described in past conferences1,2 and is briefly 
summarized here.  Typically, the histogram is produced from the values of the first two or three principal 
components of a principal component analysis.  Peaks (local maxima) in the histogram are located and labeled from 
1 to N.  The histogram space is then templated to N levels by calculating the distance of any point in the histogram 
from each peak:  that point is then labeled with the label of the closest peak.  The closest peak is established using 
the Gaussian parameters of each peak which are estimated from the co-occurrence histograms of the individual 
principal components.    Each pixel in the data cube is then assigned the digital label of its corresponding point in the 
histogram and segmentation is accomplished.  In order to generate the histograms, one must map the floating point 
values of the principal components into integer bins.  The number of segmented levels increases, up to a point, with 
the chosen number of integer bins leading from coarse to finer segmentations.  A desired number of segmentation 
levels is requested and an entropy measure is used to guide a non-linear histogram mapping2 into that final set of 
integer bins that achieves roughly the desired number of levels. 
 
As indicated, the scaling into integer bins provides a gradation of segmentations.  In previous work3, plots of number 
of segmentation levels versus number of integer bins with peak_min (the minimum number of pixels required to 
establish a peak) as a parameter often identify a natural range of clusters in the data.  A typical range is 

with .  Within that range, many segmentations can be generated.  The goal which 
motivates the current work is to identify best or most representative segmentations in this range in the absence of 
ground truth and in an objective fashion.  
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Our approach to achieving this goal is to start with over-fine segmentations, i.e. more segmentation levels than 
needed, and to use quantitative metrics to measure the "quality" of that segmentation in order to guide a compression 
into a reduced segmentation.  If the method has merit, different starts should compress into comparable 
segmentations.  Therefore a measure to establish the similarity of two or more segmentations was developed. 
Different quantitative metrics were studied and several modes of compression were examined. 
 
Our presentation is organized as follows: Section 2 explains the quantitative metrics, the similarity measure, and the 
modes of compression; Section 3 examines simulated data and real images in the VIS/NIR and MWIR; Section 4 
discusses the results and the direction of continued research. 
 

2. TOOLS AND APPROACH 
 

We initially tested pair-based metrics derived from the ACTS Algorithm4.  The ACTS method of segmentation 
works in the context of a descending tree structure in which each parent cluster is potentially split into two child 
clusters based on the scatter in the parent cluster.  The pair-based metrics test the combining of two segments based 
on the average scatter measure of the original segmentation and the average scatter measure after combining every 
combination of two segments.  That combination which made the greatest reduction in the scatter measure was 
effected and the process of pair combination repeated until a minimum scatter measure or metric value was 
achieved.  The pair-based process of segmentation compression was limited in that two segments were forced to 
combine or not to combine; there was no way to disseminate pixels to different segments.  Typically, minimums 
occurred at very coarse (too few levels) final segmentations.  Analysis of these metrics will be published at a later 
date. 
 
Better results were afforded by the metrics described next which form the main thrust of the present work.  This 
group of metrics was based on assigning each segment a measure of scatter spread; both Euclidian distance and 
angular measures were considered.  The four variations of these metrics, which represent, in effect, an average 
scatter per segment over the segmentation, change with distance measure and how the segments are averaged.  A 
summary is given in the table below.  
 
For a given segmentation,  is the total number of pixels.   is the number of pixels in each 

segment;  s is the number of segments.  .  
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of each segment over the number of bands.  ijxv  is the vector profile of the ith pixel in the jth segment.  M represents 
the final metric value. 
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We evaluate our metrics by how well it compresses multiple over-segmented starts into a common final 
segmentation.  We have used each of these four metrics to compress an N level segmentation to an (N-1) level 
segmentation as follows.  N different (N-1) segmentation variations are generated by taking each segment in turn 
and assigning each of its pixels to one of the other segments (the one whose average profile is closest to that pixel).  
The new metric of each (N-1) segmentation variation is computed.  The variation with the lowest metric is taken as 
the compressed  (N-1) segmentation. 
 
As one of our goals is to increase the commonality of different starting segmentations generated from the histogram 
technique, we require a quantitative measure of similarity between pairs of segmentations.  Given two segmentations 
to N1 and N2 levels with N1 < N2, we can define a similarity matrix, Sij, with i running from 1 to N1 and j running 
from 1 to N2.  Each matrix element, sij, is the total number of pixels labeled i in the N1 segmentation and j in the N2 
segmentation.  We leave as an exercise to the reader to show that , the sum of the N
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largest values in this matrix, under the constraint that one value per row and per column only is used, is the total 
number of pixels segmented identically in both segmentations.  We will present these results as a percent of total 
pixels. 
 
In using our metrics, five modes of compression were identified and tested for reducing over-segmented data.  All 
modes of compression are based on the first mode.  The first mode compresses segmentations from N to (N-1) to 
(N-2), to (N-final) in the fashion described above stopping at the (N-final) segmentation with the lowest metric 
value.  Mode 1K finishes mode 1 with the standard K-Means algorithm5 applied to the final compressed 
segmentation from mode 1.  The K starting centers are taken as average profiles of the segments.  We use a 
Euclidian distance measure and iterate the K-Means process ten times.  Mode 2 interleaves K-Means with mode 1 
compressions as: compression, K-Means, compression, K-means, etc. to a minimum metric value.  Mode 3 reduces 
a group of starting segmentations, N1, N2, N3 where N1 < N2 < N3, as follows.  The N1 segmentation is compressed to 
NF levels, where NF < N1, in mode 1 compression, then the N2 and N3 segmentations are compressed to NF levels as 
well (typically requiring going beyond the mode 1 minimum).  Mode 3K applies a K-means algorithm to these three 
NF segmentations.  A capsule summary of the modes is given in the table below. 
 

Mode Method 
1 Compression to a minimum metric value 
1K Final K-Means applied to mode 1 result 
2 Compression, K-Means, compression, K-Means, etc. to a minimum metric value. 
3 Smallest start compress to NF by mode 1: other starts compressed to the same NF. 
3K K-Means finish to mode 3 

 
Our modus operandi in evaluating these techniques of metric-guided compression is to generate a group of starting 
segmentations and to characterize the evolution of their similarity matrices under various modes of compression.  In 
all the examples shown (excluding the Vis/NIR example) in the following section, the starting recipe was as follows.  
From the characteristic roll-off plots of segmentation level versus number of integer bins with peak-min as a 
parameter (see figures 2 to 5 of reference 3), one chooses a representative upper bound value of the natural number 
of clusters in the particular image: N0.  We then use the interactive, entropy-guided form of histogram based 
segmentation and seek starting segmentations at N0, N0+5, and N0+10 levels.  For some images such as the Vis/NIR 
example in the next section, roll-off is not observed and a different technique of generating the starting 
segmentations was needed and is described in treating that example. 
 
 



3.  RESULTS 
 
Example 1:  Mid-wave simulated data with Gaussian noise.  
 
In a preliminary examination of our metrics and our modes of compression, we created semi-simulated data to check 
the efficacy of our algorithms.  The simulated data consisted of twelve equal regions, each of which was generated 
from a single spectral profile extracted from a real set of mid-wave data6.  Gaussian noise was then added to the 
simulated data to introduce some variation (a constant sigma of 5.5 in radiance).  The spectral profiles from the mid-
wave data came from pixels on: the field stop, two different sections of foliage, windows on a building, sky, an 
unidentified man-made object, a metallic object, a flag pole, two different sections on a building, and two different 
sections of grass.  These profiles are shown in Figure 1. 
 

 
Fig. 1. Representative spectral profiles of the simulated data regions 

 
The roll-off plots of the simulation data are shown in fig 2a.  (There are a number of roll-off plots with different 
peak_min values, but each exactly overlaps the other, so they can not be visually differentiated.)  Clearly, the plots 
point to the presence of twelve major clusters, therefore we set N0 = 12.  We requested 12, 17, and 22 levels from the 
entropy-guided histogram segmentation algorithm which returned starting segmentations of 12, 17, and 20 levels 
shown in fig 2d, 2e, and 2f (designated A, B, and C).  Figure 2b shows the PE and SE metric values as one 
compresses down from the 20 level starting segmentation.  The metric values using PE weights minimize nicely at 
12 levels, but the metric values rise for SE weights.  SE weighting seems to favor small segments split-off from the 
larger segments. Here, the SE weighting gave rise to noisy outliers as segments.  The PE weighting almost always 
gave better results for the real data as well.  Figures 2g, 2h, and 2i show the mode 1 compressed segmentations of 
the A, B, and C starts.  All starting segmentations compressed nicely into 12 segments and all collapse to the 
optimum segmentation (Fig. 2c) upon applying the K-Mean algorithm (mode 1K).  Mode 2 works for this data set as 
well but was generally poorer than mode 1K on real data.  
 
 In this case as well as the later examples, the angular metrics showed only minor differences from the Euclidean 
ones and hence we will show only PE and SE results in what follows. 



 
 

Fig. 2a. Segmentation levels versus 
scale for noise simulation Fig. 2b. Range of metric values Fig. 2c. Optimum segmentation 

   
Fig. 2d. 12 level start - A Fig. 2e. 17 level start - B Fig. 2f. 20 level start - C 

   
Fig. 2g.  Mode 1 PE compression (A) Fig. 2h.  Mode 1 PE compression (B) Fig. 2i.  Mode 1 PE compression (C) 

 
Example 2:  Mid-wave data from CTHIS6 camera. 
 
The roll-off plots of the data in example 2 indicate the appropriate number of large-scale clusters to be 8 to 10.  
Hence, we requested 10, 15, and 20 levels from the entropy-guided histogram segmentation algorithm which 
returned starting segmentations of 10, 14, and 18 levels (designated A, B, C) as shown in Figure 3.  The three starts 
had 80 to 86 percent similarity of the pixels.  Figures 3d through 3o show our compression results using modes 1, 
1K, 3, and 3K with PE weights.  The similarity table below indicates how close we came to reaching a common 
segmentation.  Mode 1K was very successful and mode 3K extremely successful.  For this case, these modes with 
SE weights (not shown) separate start C from starts A and B. 
 
 
 



Similarity table (Fig. 3) Similarity of A and B Similarity of A and C Similarity of B and C 
Starts 83 % 86 % 80 % 
Mode 1 (PE Weights) 87 87 84 
Mode 1K (PE Weights) 97 96 95 
Mode 3 (PE Weights) 87 88 85 
Mode 3K (PE Weights)  99.5 99 98.6 

 
 

   
Fig. 3a. 10 level start (A) Fig. 3b. 14 level start (B) Fig. 3c. 18 level start (C) 

   
Fig. 3d. Mode 1 (A) 8 levels Fig. 3e. Mode 1 (B) 10 levels Fig. 3f. Mode 1 (C) 13 levels 

   
Fig. 3g. Mode 1K (A) Fig. 3h. Mode 1K (B) Fig. 3i. Mode 1K (C) 



   
Fig. 3j. Mode 3 (A) 8 levels Fig. 3k. Mode 3 (B) 8 levels Fig. 3l. Mode 3 (C) 8 levels 

   
Fig. 3m. Mode 3K (A) Fig. 3n. Mode 3K (B) Fig. 3o. Mode 3K (C) 
 
Example 3:  Mid-wave data from CTHIS6 camera. 
 
For example 3 we requested 10, 15, 20 and 30 levels from the entropy-guided histogram segmentation algorithm 
which returned starting segmentations of 8, 13, 17, and 28 levels.  The 8 level segmentation compressed into 5 
levels, which appears to be too few and too concentrated on the building.  These results are shown separately in 
Figure 4.  
 

  
Fig. 4a. 8 level start Fig. 4b. Mode 1K (PE wts)   5 levels 

 
Figure 5 shows our starting segmentations of 13, 17 and 28 levels (designated A, B, and C).  The similarity table 
below for example 3  is atypical in that SE weights are somewhat better than PE weights and mode 1K 
segmentations are , in some cases, less similar than mode 1.  The buildings and the near foliage constitute numerous 
small segments leaving the results quite sensitive to SE versus PE weights.  In Figure 5, we show mode 1 and 1K 
results with SE; the similarity table includes the PE results as well. 
 



Similarity table (Fig. 5) Similarity of A and B Similarity of A and C Similarity of B and C 
Starts 78 % 90 % 76 % 
Mode 1 (PE Weights) 67 92 67 
Mode 1 (SE Weights) 85 91 84 
Mode 1K (PE Weights) 84 84 75 
Mode 1K (SE Weights) 94 82 79 

 

   
Fig. 5a. 13 level start (A) Fig. 5b. 17 level start (B) Fig. 5c. 28 level start (C) 

   
Fig.5d. Mode 1 SE wts (A) 8 levels Fig.5e. Mode 1 SE wts (B) 13 levels Fig.5f. Mode 1 SE wts (C) 23 levels 

   
Fig. 5g. Mode 1K   SE wts (A) Fig. 5h. Mode 1K   SE wts (B) Fig. 5i. Mode 1K   SE wts (C) 
 
Example 4:  Vis/NIR data from CTHIS7 camera.  
 
In this example there was no true roll-off of our plots.  We looked for stability in the various segmentations 
generated.  We called for an array of 10 segmentations ranging from 10 segments to 30 segments.  The returned 
array of segmentations is then examined for persisting segmentation levels, or "islands of stability".  In this data set, 
there were recurring segmentations found at 10, 14, and 19 levels (designated A, B, C), so we used these as our 



 starting segmentations (Fig. 6a, b, c).  Modes 1 and 2 did not prove successful for this example.  As seen in the 
similarity table below, mode 3 with PE weights and then mode 3K collapses the three starts into a common nine-
level segmentation. 
 

Similarity table (Fig. 6) Similarity of A and B Similarity of A and C Similarity of B and C 
Start 85 % 78 % 78.5 % 
Mode 3 (PE weights) 92 86 90 
Mode 3K 98 97 98 

 

 
Fig. 6a. 10 level start (A) Fig. 6b. 14 level start (B) Fig. 6c. 19 level start (C) 

 
Fig. 6d. Mode 3 (A) 9 levels  Fig. 6e. Mode 3 (B) 9 levels. Fig. 6f. Mode 3 (C) 9 levels. 

 
Fig. 6g. Mode 3K (A)  9 levels Fig. 6h. Mode 3K (B)  9 levels Fig. 6i. Mode 3K (C)  9levels 



4.  DISCUSSION/FUTURE WORK 
 
In the examples shown, metric compression has extracted a more similar and representative segmentation from 
several diverse starting segmentations.  In particular, mode 3 and mode 3K appear to be promising in compressing 
different starting segmentations into final segmentations with the same number of levels.  However, the robustness 
of these techniques needs to be improved: the best way to generate starting segmentations as well as the best mode 
of compression appears to be data dependent.  The sought-after best final segmentation is often not forthcoming and 
indeed may not  be a meaningful entity in certain  scenes. 
 
The similarity matrix introduced in Section 3 could be used in a more sophisticated way.  We reduce our comparison 
of two segmentations to a single fractional percent, F%, indicating the fraction of pixels "identically" segmented in 
the pair compared.  However, the remaining (100-F)% fraction could, at one extreme, be found in one entry in the 
matrix, or at the other extreme, be splintered into many small entries.  An observer, viewing the images reflecting 
these extreme cases, would judge the former case as a much more similar segmentation pair than the latter case. 
 
To continue to improve upon this work, testing should continue as new data sets and new generation sensors become 
available.  Data sets from HYDICE example proved to be problematic, perhaps due to the small segments inherent 
in the data.  Data sets with available ground truth should enable more definitive conclusions about the utility of these 
metrics.  In addition, the present idea of over-segmenting and compressing into a common representative 
segmentation should be joined to and compared with a complementary process such as used in the ACTS algorithm, 
where one starts with a few, or even just one segment and splits according to metric value tests. 
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