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ABSTRACT

A spectral imager constructs a three dimensional (two spatial and one spectral) image from a series of two
dimensional images. This paper discusses a technique for spectral imaging that multiplexes the spatial and
spectral information on the focal plane, then demultiplexes the resulting imagery to obtain the spectral image.
The resulting spectral image consists of 100x100 spatial pixels and 25 spectral bands. The current implementa-
tion operates over the 3-5pm band, but can easily be applied to other spectral regions. This approach to spectral
imaging has high optical throughput and is robust to focal plane array (FPA) nonuniformities. A hardware
description, the mathematical development and experimental results are presented.

1. INTRODUCTION

Here we investigate the applicability of spectral imaging to mid-wave infrared target detection. We are interested
in spectral discrimination rather than quantitative analysis. From previous experience we know that infrared
scenes consist of low contrast details on a large background pedestal, and that focal plane array (FPA) nonuni-
formities and low optical throughput often limit the performance of infrared spectral imagers. Our approach
is to incorporate both a throughput and a multiplex advantage into a spectral imager, and at the same time
address the effect of FPA nonuniformity on spectral imaging.

Typical state-of-the-art spectral imagers image the spectrum of a slit onto a 2-dimensional focal plane array;
the slit is scanned over the object to create a 3-dimensional spectral image [1]. Since only a slit is imaged at
a time, the out-of-slit photons are unutilized, hence these spectral imagers are inherently inefficient. Further,
pixel-to-pixel nonuniformities on the FPA can corrupt the spectral imagery and reduce the ultimate performance.

The spectral imager we study images the entire scene over all of the spectral bands, and is similar to previously
reported devices [2, 3, 4, 5]. Figure 1 is a schematic representation of our approach. It consists of a telescope,
a direct vision prism and a camera. A direct vision prism consists of two pieces of glass that are arranged
such that one wavelength passes through undeviated while other wavelengths are deviated along a line. The
direct vision prism is mounted in a bearing so that it can be rotated around the optical axis. As the prism is
rotated the spectral features in the image will trace out circles where the radius of the circles are wavelength
dependent. To obtain a spectral image, several frames of camera data are obtained with the prism in different
angular orientations, then a computer is used to extract the spectral image from the measured data. Since all
available photons are utilized, we anticipate that the spectral imager performance will reflect the increase in
efficiency. The actual performance, and potential multiplex advantage (or disadvantage), depend on how well
the inversion algorithms perform. We will also demonstrate that the imager is robust to FPA nonuniformities.

If in Fig. 1 the field stop were replaced by a slit and the bearing prism mount were replaced by a linear scan
mechanism, then the modified system would be a standard scanned-slit spectral imager. In either case the
throughput is determined by the f/# and the field stop area. Since the field stop area is much larger for
the angularly multiplexed configuration and f/#’s are unchanged, the angularly multiplexed configuration has
higher throughput. The throughput advantage is given by the ratio of the field stop areas which is a factor of
100 when our implementation is compared to a single-pixel-width slit instrument.
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Figure 1: A schematic representation of the spectral imager and its operation. On the left the direct vision
prism is shown spreading the red, green and blue light across the FPA. On the right the e�ect of the prism
rotation on the overlapping red, green and blue images is illustrated. The circle and arrow represent the prism
orientation.

In what follows we will give a description of the inversion algorithms and the hardware implementation, and
illustrate the performance on measured data. We will show that our approach to spectral imaging is mathemati-
cally similar to the problem of limited angle tomography in medical imaging, and that this fact complicates both
the data processing and the system analysis. These complications limit the extent to which we can completely
describe the spectral imager in this paper, and expand the areas of future work. The following is an overview
of our approach to spectral imaging.

2. THE INVERSION ALGORITHM

Other work in tomographic spectral imaging has relied heavily on the tomographic reconstruction techniques
used in medical imaging. Here we develop an inversion technique that is appropriate for spectral imaging. We
note in passing that this spectral imaging problem is very similar to that of ectomography [6, 7, 8]. In both
cases all of the projections fall on the same plane and both su�er from limited viewing angle (the concept of
limited viewing angle is discussed in the following section). The inversion technique developed here has the
advantage of being a direct inverse.

Assume that we want to construct a three-color image of a scene c(x; y; �). We divide the scene into three
spectral bands, c1(x; y); c2(x; y) and c3(x; y) (e.g. red, green and blue in Fig. 1). The action of the prism-
camera combination on the spectral image is to disperse each of the colors relative to one another. For example,
with reference to Fig. 1, c2(x; y) (green) is undeviated, while for the �rst prism orientation c1(x; y) and c3(x; y)
(red and blue) are deviated up and down respectively. As the prism is rotated the angular orientation of the
deviation will change while its magnitude remains unchanged.

Since an image displacement can be represented as a convolution with a displaced delta function, the data that
is recorded by the computer will be [9]

r1(x; y) = p1;1(x; y) �� c1(x; y) + p1;2(x; y) �� c2(x; y) + p1;3(x; y) �� c3(x; y)

r2(x; y) = p2;1(x; y) �� c1(x; y) + p2;2(x; y) �� c2(x; y) + p2;3(x; y) �� c3(x; y) (1)

r3(x; y) = p3;1(x; y) �� c1(x; y) + p3;2(x; y) �� c2(x; y) + p3;3(x; y) �� c3(x; y);

where rm(x; y) is the data recorded for framem at location (x; y), pm;n(x; y) is the point spread function of spec-
tral band n recorded on image m, and �� indicates a two dimensional convolution. Each of the r1(x; y); r2(x; y)
and r3(x; y) correspond to the recorded image for a di�erent angular orientation of the direct vision prism.



Each of the pm;n(x; y) is a displaced delta function, and is given by

pm;n(x; y) = �(x� (n � no)�x cos(�m); y � (n� no)�x sin(�m)); (2)

where �x is the pixel dimension on the FPA, no is the index of the undeviated color, and �m is the angular
orientation of the prism on frame m. As the prism is rotated the imagery in spectral band no is unchanged,
while the imagery from spectral band n orbits about that of no on a circular path with radius (n� no)�x. An
implicit assumption in this development is that the unique spectral bands are dispersed by integer numbers of
pixels on the focal plane, and that the pixels on the focal plane are square.

We wish to solve the system of equations Eq.1 for cn(x; y). First we take the spatial two dimensional Fourier
transform of each equation.

R1(�; �) = P1;1(�; �)C1(�; �) + P1;2(�; �)C2(�; �) + P1;3(�; �)C3(�; �)

R2(�; �) = P2;1(�; �)C1(�; �) + P2;2(�; �)C2(�; �) + P2;3(�; �)C3(�; �) (3)

R3(�; �) = P3;1(�; �)C1(�; �) + P3;2(�; �)C2(�; �) + P3;3(�; �)C3(�; �);

where we use capital letters to indicate that we have Fourier transformed, and � and � are the spatial frequency
variables.

The form of Eq. 3 can be reduced to
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which is simply a large array of vector-matrix multiplications

~R(�; �) = P (�; �)~C(�; �): (5)

Note that our large system of equations has been block-diagonalized; we have a vector-matrix multiplication at
each spatial frequency rather than one large vector-matrix multiplication. This block-diagonalization is a key
computational consideration for our hardware realization and subsequent data processing. For the hardware
implemented, we solve for 50 240�240 spectral images from a sequence of 80 240�240 input images. Hence, we
invert 57,600 50�80 matrices rather than one 4,608,000�2,880,000 matrix. Once completed the inversion need
not be repeated unless the system used to acquire the data is changed (provided the inverse is stored in some
useful way).

For the continuous case each of the Pm;n(�; �) is given by

Pm;n(�; �) = e�2�i(� cos(�m)+� sin(�m))(n�no)�x: (6)

Pm;n(�; �) can be rewritten as

Pm;n(�; �) = Pm;n(~�) = e�2�i~��~�; (7)

where ~� is the vector ((n � no)�x cos(�m); (n� no)�x sin(�m)). It can also be rewritten as

Pm;n(�; �) = [e�2�i(� cos(�m)+� sin(�m))�x](n�no); (8)

where it is evident that each P (�; �) is Vandermonde [10]. If the algorithm is to be implemented on a computer,
the expression for Pm;n(�; �) is complicated by the fact that ~� may not fall exactly on a pixel center. We address
this issue by assuming that the four pixels nearest ~� are a�ected bilinearly weighted relative to their distance
from ~�. This is equivalent to assuming that the optical point spread function is a uniform square the same size
as a pixel and that the pixels have 100% active area.



Before we address the inversion of P (�; �) it is worth considering its symmetries. If we assume that �m =
2�m=M , that 0 � m < M , M is divisible by 4 and 0 � n < N and that m, M , n, no and N are integers, then
the following symmetry properties hold:

Pm;n(�; �) =

P �

m;2no�n
(�; �)

P �

m+M=2;n(�; �)

P �

m;n(��;��)
Pm+M=4;n(�;��)
PM=2�m;n(��; �)

: (9)

These symmetry properties can be used to reduce the computer memory and computational requirements of
the algorithm.

To this point we have neglected the e�ects of noise. If we assume that the noise is additive, then Eq. 5 becomes

~R(�; �) = P (�; �)~C(�; �) + ~N (�; �); (10)

where ~N (�; �) is the 2D discrete spatial Fourier transform of the additive noise vector.

In order to solve for ~C(�; �) we need to invert P (�; �). Even though e�cient algorithms exist for inverting the
Vandermond matrix P (�; �), two factors lead us to use the singular value decomposition (SVD) [11]: P (�; �) is
rectangular, and for small values of � and � it will be singular.

SVD factors an M�N matrix into a product of an M�N column-orthogonal matrix U , an N�N diagonal matrix
W with real non-negative elements, and an N�N orthogonal matrix V y,

P = UWV
y: (11)

Since U and V are column orthonormal, we �nd

U
y
U = V y

V = 1; (12)

where the dagger indicates Hermitian adjoint (transpose conjugate). The inverse of the diagonal matrixW is
illustrated by 2
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We �nd that for an M�N matrix P we can make a pseudoinverse V W�1
U

y, such that

1 = V W�1
U

y
P : (14)

We estimate ~C(�; �) by ~C(�; �) where

~C(�; �) = V (�; �)W�1(�; �)U y(�; �)~R(�; �); (15)

where only the matrixW (�; �) is potentially singular, which occurs when one of its diagonal elements is zero.
In this application the noise in the recorded image data r(x; y; �m) is e�ectively divided by wi;i(�; �), so if the
value of any of the wi;i(�; �) is small, the noise will be greatly ampli�ed. To circumvent this problem we replace

W
�1(�; �) with the matrix ~W

�1
(�; �), which is also diagonal with elements

~wi;i(�; �) =
wi;i(�; �)

w2
i;i(�; �) + �2

; (16)

where the optimum value of � is data, noise and spatial frequency dependent.



The e�ect of singular matrices can be further investigated by substituting for ~R(�; �) in Eq. 15; we also drop
the explicit (�; �) reference to simplify the expression.

~C = V [ ~W
�1
WV

y ~C + ~W
�1
U

y ~N ]: (17)

The columns of V that correspond to the small values of wi;i de�ne the null space of our imaging system. From
Eq. 17 we see that in the null space the scene information is lost and the noise is nulled. The next two sections
analyze the null space and describe our treatment of it.

Before we examine the null space we introduce a notational variation that will be useful later. From the
proceeding development, we �nd it possible to summarize Eq. 1 (with additive noise) as

~r = F�1PF~c+ ~n; (18)

where F is the 2D Fourier transform operator for the lexicographically ordered inputs ~c and outputs ~r, and P
is the block-diagonalized assembly of matrices P . We can extend Eq. 18 to include the SVD of P

~r = F�1UWV
y
F~c+ ~n: (19)

We will �nd Eq. 19 useful in our discussion of �lling in the missing cone.

3. THE CONE OF MISSING INFORMATION

In general, when one of the wi;i(�; �) values becomes too small, there is insu�cient information to determine
how the measured signal should be distributed among the spectral bands; information has been lost. Both
Descour [4] and Bernhardt [5] have demonstrated that the missing information is similar to the missing cone in
some medical imaging techniques [12] (the illustrations in Ref. [4] are particularly illuminating).

The origin of the missing cone is best understood in the context of the Radon transform combined with the
central slice theorem [13]. From the central slice theorem, we know that the 2D Fourier transform of a projection
is equal to a slice through the origin of the 3D Fourier transform of the spectral image. By rotating the prism,
we obtain di�erent slices through the origin each at a di�erent angle about the optical axis, but with the same
angle with respect to the optical axis. We can use the slices to reconstruct the object in the Fourier domain. In
the limit of an in�nite number of projections, the projections will de�ne a cone. Since none of the projections
provide any information about the image inside this cone, it is referred to as a 'missing cone'.

Figure 2 illustrates that the image through the direct vision prism is analogous to a projection through the
pseudo-volume de�ned by two spatial and one spectral dimension. From Fig. 2 we can also identify the cone
(triangle in the �gure) of missing information. To estimate the impact of the missing cone on our imaging
system, we calculate the fractional volume of the missing cone; which is a consequence of the projection angle
�. Our interpretation of the projection angle is governed by two assumptions: 1) adjacent spectral bands are
displaced by one pixel on the focal plane, and 2) the volume object elements (voxels) are assigned a cubic
shape. The �rst assumption is easily justi�ed since it is consistent with scanned slit con�gurations. The second
assumption is completely arbitrary, but has the bene�t that the Fourier transform of the object will be a cube.
If we accept these two assumptions, then it follows that the missing cone half angle is 45 degrees.

Another perspective of the missing cone is obtained by analyzing the singular values of P. When the singular
values are small, information is lost. We expect the small singular values to de�ne a conical shape. Figure 3
is a graphical representation of the values of wi;i(�; �) illustrating where in the frequency domain information
is lost. The dark regions in Fig. 3 are due to the missing cone. While the physical interpretation is identical
to that in [12], the mathematical treatment here di�ers from that commonly found in the literature since this
treatment uses a hybrid of Fourier and SVD determined basis functions. Figure 3 also supports our conclusion
that the cone angle is 90 degrees: at the highest chromatic frequency the cone diameter covers +/- Nyquist, as
we expect for a 90 degree cone angle.
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Figure 2: The correspondence of our recorded data to Radon projections. The
projection angle follows from the assumptions that adjacent spectral bands are dis-
placed by one pixel on the FPA and that the object volume elements are equilateral
(square in the �gure). The spectral image can be reconstructed in the frequency do-
main by using the central slice theorem. The projection angle de�nes the half-angle
of the missing cone.

An intuitive understanding of the missing cone can by obtained by considering the sequence of frames recorded
for a monochromatic source of in�nite extent that is perfectly uniform. Since the source is uniform and of in�nite
extent, the sequence of frames will be una�ected by the rotation of the prism (if we consider a system with no
�eld stop). The same sequence of recorded frames would be recorded for any wavelength monochromatic source
or for any broad-band extended source that was perfectly uniform. Therefore, there is no way to algorithmically
distinguish the spectral content of a spatially uniform source, and the zero spatial frequency information is lost.

Next consider a system with a slit �eld stop one pixel wide and with the prism dispersion oriented normal to
the slit. Since the �eld stop is only one pixel wide, spatial and spectral information do not overlap and the
slit object is easily reconstructed from one projection without a missing cone. We could also use our matrix
formalism to reconstruct the object; however, in this case the reconstruction would su�er from a missing cone.
We are left to resolve why the missing cone is present with one reconstruction and not with the other, from
what appears to be the same set of data.

The di�erence arises because in the former case the information about the �eld stop is used in the inversion
while in the latter it is not. The �eld stop information can be introduced into the central slice reconstruction by
convolving the Fourier transform of the �eld stop with the projection data. The slice goes from being in�nitely
thin to having a �nite thickness. For an in�nitely thin slit the slice becomes in�nitely thick, and the missing
cone is �lled, or for a discrete system, a slit one pixel wide would completely �ll the missing cone.

The �eld stop S could be included in the matrix formalism as

~r = F�1UWVyFS~c+ ~n: (20)

where S de�nes the �eld stop and is a square diagonal matrix with zeros and 1s on the diagonal. Since both W
and S are singular, the pseudoinverse must treat them together. This fact destroys the block diagonal structure
of the matrix and makes direct inversion of the matrix intractable for most applications. However, in the next



Figure 3: Illustration of the wi;i(�; �) values as a function of spatial frequency. Each of these images corresponds
to a horizontal slice through the 3-dimensional representation of the spatial-spectral transform image on the
right side of Fig. 2. Zero spatial frequency is in the center of each image. Bright and dark regions correspond
to large and small values of wi;i(�; �) respectively. The sequence from left to right, top to bottom corresponds
to descending spectral frequency data. The lower right image corresponds to image features that change slowly
as a function of wavelength (low chromatic frequencies). The upper left image corresponds to image features
that change rapidly as a function of wavelength (high chromatic frequencies). The dark region in the center of
each image corresponds to the spatial-spectral frequencies where information has been lost.
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Figure 4: A schematic representation of how low-pass �ltering, augmenting the
data, and utilizing the �eld stop prior knowledge can be used to reduce the fractional
volume of the missing cone. Low-pass �ltering reduces the chromatic resolution, but
preferentially �lters out missing information, the augmentative data �lls in the zero
spatial-frequency axis information, and the �eld stop prior knowledge broadens all
of the data samples.

section we will show that an iterative technique can be used to include the �eld stop information into the
reconstructed image without loosing the block diagonal structure of the matrix.

4. FILLING IN THE MISSING CONE

The missing cone occupies 26% of the object volume in the frequency domain after the direct inverse. Clearly
this is an unacceptably large fraction of missing information. In this section we discuss several methods for
reducing the fraction of missing information.

The �rst and easiest way to reduce the missing volume is to �lter the data [7]. Figure 4 illustrates the e�ect of
reducing the chromatic resolution by a factor of 2. In this case a rectangle function �lter is used to pass only
the low chromatic frequency data (the �gures and discussion in Ref. [7] are illuminating). The e�ect of this
�lter is to reduce the fraction of missing information to 6:5%.

The second approach is to use the �eld stop to �ll in the missing cone. As we discussed in the previous
section, direct methods for including the �eld stop information fail due to the large computational and memory
requirements of inverting the matrix WVFS directly. We avoid this problem by using an iterative method
similar to that in Ref. [14]. The idea is to �nd a solution that is consistent with both our measured data
and with our knowledge of the �eld stop. We begin by constructing a constraint K such that K~c is an altered
version of our estimate ~c that is consistent with our knowledge of the �eld stop. Then we transform K~c into the
frequency domain and replace the data values in the missing cone with the values as modi�ed by the constraint.
Then we repeat the process until some halt criterion is reached. In general the operator K need not be linear
so that we can utilize constraints such as non-negativity.



The initial inverse gives the result
~c0 = F

�1V ~W�1UyF~r: (21)

Subsequent iterations use the preceding results and the constraint to �ll in the missing cone

~cj = F
�1V[L ~W�1UyF~r +RVyFK~cj�1]; (22)

where L and R are generalizations of L(�; �) and R(�; �) which are diagonal with elements

Li;i(�; �) =
w2
i;i(�; �)

w2
i;i(�; �) + �2

; (23)

and
Ri;i(�; �) = 1� Li;i(�; �); (24)

and � is a constant similar to �. From Eqs. 23 and 24 we see that L and R function as a switch selecting
between the left and right term in Eq. 22: large values of wi;i(�; �) select the left term (measured data selected
outside the missing cone), while small values of wi;i(�; �) select the right term (constrained solutions selected
inside the missing cone). In Fig. 4 we see that the e�ect of the �eld stop is to broaden the data samples.

The third way to �ll in the missing cone is to augment the data set with an alternative spectral technique. In
particular we have found it useful to re-image the entrance pupil onto the �eld stop, and extract the on-axis
component of the missing cone from the step response at the edge of the �eld stop. This additional spectral
information can be incorporated into the constraint K in Eq. 22. When combined with the �eld stop constraint,
the information on-axis is broadened, and our image reconstruction very rapidly converges.

Bernhardt [5] has proposed a very clever technique for �lling in the missing cone that utilizes a zoom lens.
We did not use Bernhardt's technique because an infrared zoom lens with su�cient variation in power was
not available. We believe that some relief on the zoom lens requirements can be achieved by incorporating the
methods described immediately above, but a demonstration of that has been left for future work.

An additional technique for �lling in the missing cone will be introduced in Section 8 when we discuss the
principal component analysis of our data. We have not yet investigated its utility and postpone its discussion
until after we have introduced principal component analysis. Investigation of additional methods for reducing
the fractional volume of the missing cone is an area of continuing research.

5. IMPLEMENTATION

We veri�ed the operation of the spectral imager using a PtSi infrared camera imaging over the 3-5�m band. The
camera operated at f=2:7 and utilized a 320�244 FPA obtained from FLIR Systems. We chose this focal plane
because it was non-interlaced and had a �ll factor of over 80%. A Diversi�ed Optical Products infrared direct
vision prism was used as the disperser. The IR camera, drive electronics and 12-bit/pixel real-time consecutive
frame data acquisition electronics were all built in-house.

The strong dependence of PtSi quantum e�ciency on wavelength �(�) has both negative and positive conse-
quences. While complicating calibration of the incident photon ux, it compensates for the large imbalance
between the photon ux at short and long wavelengths. This compensated balance simpli�es measurement of
object emissivity, and makes PtSi an appealing candidate for spectral imaging applications where measurement
of object emissivity rather than measurement of incident ux is required.

The dispersion of the prism, the focal length of the �nal lens and the band pass of the camera established
that a broad-band point source was spread over 50 pixels (N = 50). In the current implementation 80 prism
orientations �m are uniformly spaced over 2� (M = 80).



A �eld stop 100�100 pixels on a side was mounted at the real image in the telescope. In this infrared imaging
application the �eld stop is warm and emissive, so it provides the prior knowledge that it is uniform, but
its intensity is non-zero and the spectral distribution is unknown. Since we are most interested in spectral
discrimination we chose to measure the scene spectrum relative to the �eld stop. We could use this instrument
radiometrically by calibrating the �eld stop, but as yet have avoided this complication.

The format of the FPA dictated the size of the discrete Fourier transform. We cropped the two top and bottom
rows and the 40 left and right columns to implement a 240�240 Fourier transform using the Good-Thomas
method described in Ref. [15].

The software to invert the data was written in-house in C for Solaris. The matrix decomposition was performed
once for a given con�guration and the result stored on hard disk. Subsequent inversions accessed the data on disk.
The size of the �le was minimized by utilizing the symmetry properties from Eq. 9. In e�ect the decomposition
of only one octnt need be stored. The symmetry was also used to reduce the data from complex to real. The
precision of the stored data was short integer (16 bits). The size of the �le for the current con�guration was
approximately 100 Mbytes. We believe that an additional reduction by a factor of 2 is possible, but have left it
for future work.

The operation of the instrument consists of: 1) digitally recording the 80 projection images, 2) digitally recording
di�used image data with the prism oriented normal to one edge of the �eld stop (supplementary data used to
�ll in the missing cone), 3) performing the direct inverse, 4) performing the iterative re�nement calculations.
For a camera operating at 30 frames/sec. the data acquisition is completed in less than 3 seconds. The data
processing is completed in under 5 minutes on a Pentium Pro 200 computer.

6. THE EFFECT OF FPA NONUNIFORMITY

Before we demonstrate the operation of the spectral imager, we would like to highlight one of its most important
characteristics (especially in infrared imaging). Infrared imagery is characterized by low contrast details on a
large background pedestal. Pixel to pixel nonuniformities on the FPA interact with the large background
pedestal to create a spatial noise pattern in the imagery. This e�ect is well documented [16] and played a large
role in the evolution of infrared imagers. Therefore, we expect FPA nonuniformity to play a large role in the
development of infrared spectral imagers, and must consider the e�ect of FPA nonuniformity on our measured
data.

As the prism rotates the nonuniformity is spatially �xed on the FPA and coincides with the undeviated spectral
band (also �xed). Additive nonuniformities will be entirely consistent with image features in the undeviated
spectral band, and will be treated as such by the inversion algorithm. Therefore, the undeviated spectral band
will be corrupted by FPA additive nonuniformities, while the other spectral bands will not. The system could
be designed such that the corrupted band coincides with an atmospheric absorption band, or some other band
of little interest in order to minimize their impact on spectral discrimination.

The e�ect of multiplicative nonuniformities is dominated by their interaction with the large background pedestal.
Since the background pedestal is independent of prism rotation, the bulk of multiplicative nonuniformities will
again be mapped to the undeviated spectral band by the inversion algorithm, and a similar argument can be
made for the spectral nonuniformity interaction with the background pedestal. We �nd that the vast majority
of nonuniformity e�ects appear in the undeviated spectral band.

The fraction of the multiplicative and higher order nonuniformities that interacts with low contrast image
details, the higher frequency component of the 1/f noise (drift that occurs during data acquisition), and the
interaction of the spectral nonuniformities with the low contrast details will all appear as noise. These higher
order terms are almost always negligible.

The inherent robustness of this technique to FPA nonuniformity and its high throughput are the two major



Figure 5: Visible image of the scene used for the
demonstration. The reective plate and di�er-
ential source are illuminated by an incandescent
lamp. Here the lamp intensity is much greater
than when the experiment was performed so that
the reected light can be seen.

Figure 6: Broad-band infrared image of the scene
used for the demonstration. Here the �eld stop
limits the �eld of view to the central 100�100 pix-
els.

technical reasons for considering this spectral imaging approach.

7. DEMONSTRATION

To demonstrate the operation of the spectral imager we imaged a laboratory scene that contained objects with
di�erent spectral signatures. We used a controlled laboratory scene so that we could investigate the e�ect of
the missing cone on spectral reconstruction and spectral discrimination. We note in passing that the standard
technique of imaging the exit slit of a monochrometer to calibrate the spectral imager will give optimistic
results since a slit object has a lot of high spatial-frequency energy that falls outside the missing cone. Our
demonstration scene consists of extended objects, where a large fraction of the scene energy falls inside the
missing cone, creating more of a challenge for our reconstruction algorithm.

A visible image of the scene is shown in Fig. 5. It consists of a di�erential source and a reective plate. The
di�erential source consists of two plates one in front of the other. The front plate has a four-bar pattern of holes
so that the back plate can be seen through the holes. The back plate is held at a temperature elevated above
that of the front plate so that in the infrared the source appears as four bright bars. The reective plate was
illuminated with an incandescent lamp that was controlled by a variable autotransformer. The lamp voltage
was adjusted so that in the broad-band infrared image the signal from the reective plate matched that of the
di�erential source. A broad-band infrared image of the scene is shown in Fig. 6. We expect three major spectral
signatures (the background, the hot bars and the reective plate) and hope to use the di�erences between the
spectral pro�les of the plate and the bars to distinguish between them.

Figures 7 and 8 illustrate one of the projections and one of the spectral reconstructions. The spectral pro�les of
a pixel in the plate and of a pixel in a bar are shown in Fig. 9. Since the illumination of the plate is intended to
simulate solar illumination, the plate pro�le is labeled 'Solar'. We see that the 'Solar' pro�le is larger at short
wavelengths while the thermal pro�le is larger at long wavelengths, and that the pro�les cross at approximately
4.1 �m. The spectral notch at 4.27 �m is due to absorption by CO2 in the atmosphere.

We implement the spectral discrimination by principal component analysis. Each pixel's spectral pro�le is used
to form the rows of a matrix which we decompose using SVD. The decomposition yields singular values, spec-
tral eigenvectors and spatial eigenvectors. Since our demonstration scene has three components (background,



Figure 7: One of the 80 projections. Here the
blurring is due to the prism dispersion.

Figure 8: One of the 50 spectral reconstructions
before �ltering. This reconstruction corresponds
to 3.8 �m.
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Figure 9: A comparison of single pixel spectral pro�les from the reective
plate and a 'hot' bar prior to �ltering. The spectral pro�les shown are
measured relative to the �eld stop, which we have assumed to be spectrally
at.
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Figure 10: Scatter plot of the spatial-spectral im-
age data using the two leading terms of the sin-
gular value decomposition. The indicated display
axis corresponds to the left image in Fig. 11.

Figure 11: Spatial display of the spectrally dis-
criminated objects. The center image is a broad-
band image. On the left the display axis is oriented
to map the plate and background to the same level;
and therefore accentuate the bars. On the right
the plate is accentuated.

plate, and bars), two of each type eigenvector should be enough to describe the spectral image; the remaining
eigenvectors describe the noise.

Once decomposed, each pixel in our demonstration has two statistically meaningful coe�cients, one from each
of the spatial eigenvectors. In Fig. 10 each pixel is represented by a bright point located using the two
coe�cients as cartesian co-ordinates to form a scatter plot. In the �gure we see that the pixels associated with
the background, plate, and bars are distinguishable from one another. The pixels that lie between the bars
group and the background group are pixels that fall on a bar edge. The fraction of the pixel that is �lled by
the bar can be determined from its location relative to the two groups.

In Fig. 11 we have linearly combined the two spatial eigenvectors to accent the bars or the plate by rotating
the display axis relative to the two orthogonal bases. The left image in Fig. 11 corresponds to the display axis
as shown in Fig. 10. Both Fig. 10 and Fig. 11 show that this approach to spectral imaging is e�ective as a
spectral discriminant.

8. ANALYSIS OF THE ITERATIVE ENHANCEMENTS

Unfortunately, we are as yet unable to quantify the performance of the spectral imager. While the high optical
throughput gives us reason to be optimistic, the extent to which the missing cone will degrade performance
is not clear. The nature of the missing cone implies that the performance will be data dependent, and our
techniques for �lling in the missing cone make the data dependence di�cult to identify. In this section we
address the e�ect of our �ll-in techniques on the �delity of our reconstructed spectral imagery.

Since the demonstration scene was designed to create data that can be represented by two eigenvectors, analysis
of the remaining eigenvectors provides information about the e�ect of the missing cone on the reconstructed
image. Further, by analyzing the singular values as a function of the iteration number we can estimate how
things are improving as we iterate.

Figure 12 is a plot of �ve of the singular values as a function of number of iterations. The scene information
is represented by the largest two singular values, the missing cone artifacts are represented by the third and
lower singular values, and the noise is present in all of the eigenvectors, and becomes dominant for the smaller
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Figure 12: The four largest and smallest singular
values as a function of number of iterations. The
decline of the third largest singular value for the
�rst few iterations indicates the e�ectiveness of the
iterative techniques for �lling the missing cone.

Figure 13: An enlarged view of the spatial eigen-
vector corresponding to the third largest singular
value (artifact due to the missing cone) after 5 iter-
ations. The ringing at the plate edges is indicative
of lost information.

singular values. While the separation of the scene information from the missing cone artifacts is probably not
strictly true, it appears to be a good approximation.

In Fig. 12 we see that the third largest singular value is most a�ected by the iterative process; its value drops by
almost a factor of 3 after 4. The spatial eigenvector corresponding to the third largest singular value is shown
in Fig. 13. The hypothesis that Fig. 13 represents a missing cone artifact is supported by the fact that the
dark edge around the bottom part of the plate and the bright areas between the bars are inconsistent with the
physical attributes of the scene.

From this analysis we conclude that the iterative procedure has reduced the e�ect of the missing cone by a
factor of nearly 3. Given that the �ltering had reduced the fractional missing cone volume to 6:5%, our estimate
of the post-iteration missing fractional volume is just over 2% for this particular scene.

We could use this approach to further reduce the missing cone artifacts for this particular scene by eliminating
the third and higher eigenvectors from reconstruction altogether, but then we could no longer use the principal
component analysis to evaluate the results. It is possible that the SVD analysis of the iterative procedure could
be used to separate those principal components that are iteration independent from those that are iteration
dependent to eliminate missing cone artifacts for a general scene. We have not yet found a way of evaluating
the approach, so it remains for future work.

While the iterative techniques are e�ective, there is still room for improvement. We hope to expand and re�ne
the techniques used to eliminate the missing cone artifacts in future work. It is important to remember that
while scenes that are spatially very uniform will be poorly reconstructed, analysis of spatially uniform scenes
does not require imaging techniques (due to the lack of spatial structure), and scenes with spatial structure will
be less susceptible to the missing cone.

9. CONCLUSIONS

We have described and demonstrated a high throughput approach to spectral imaging that is also robust to
FPA nonuniformities. We demonstrated our approach in the mid-infrared, but it is generally applicable to any
spectral band where 2-dimensional imaging arrays and direct vision prisms are available.



The high throughput and robustness to FPA nonuniformity mean that this approach can be used with nonuni-
form high-quantum e�ciency FPAs to minimize the amount of time required to collect high �delity hyperspectral
image data.

We have also shown that this approach is subject to a cone of missing information. In particular, the low
spatial-frequency/high spectral-frequency information is missing from the resulting spectral imagery which leads
to limited degradation of the image quality. However; we demonstrated that by �ltering and using iterative
techniques, the fractional volume of missing information could be reduced to approximately 2%. In the process
of analyzing our data, we demonstrated that principal component analysis is a very useful tool for identifying
artifacts in image sequences.

For scenes with substantial spatial structure, this is a promising approach to spectral imaging.
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