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High-throughput hyperspectral infrared camera
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A spectral imager constructs a three-dimensional (two spatial and one spectral) image from a series of two-
dimensional images. We discuss a technique for spectral imaging that multiplexes the spatial and spectral
information on a staring focal plane and then demultiplexes the resulting imagery to obtain the spectral image.
The spectral image consists of 100 X 100 spatial pixels and 25 spectral bands. The current implementation
operates over the 3-5-um band, but can easily be applied to other spectral regions. This approach to spectral
imaging has high optical throughput and is robust to focal plane array nonuniformities. A hardware descrip-
tion, the mathematical development, and experimental results are presented. © 1997 Optical Society of

America [S0740-3232(97)00411-0]

1. INTRODUCTION

Often objects of similar intensity have different spectral
signatures that can be used to distinguish between them.
This work is motivated by our desire to perform spectral
discrimination in the midwave infrared. From previous
experience we know that infrared scenes consist of low-
contrast details on a large background pedestal, and that
focal plane array (FPA) nonuniformities and low optical
throughput often limit the performance of infrared spec-
tral imagers.! Our goal is to address these potential
performance-limiting issues by incorporating both a
throughput and a multiplex advantage into a spectral im-
ager and at the same time address the effect of FPA non-
uniformity on spectral imaging.

Typical state-of-the-art spectral imagers image the
spectrum of a slit onto a two-dimensional (2D) FPA; the
slit is scanned over the object to create a three-
dimensional (3D) spectral image.? Since only one slit is
imaged at a time, the out-of-slit photons are rejected,
hence these spectral imagers are inherently inefficient.
Further, pixel-to-pixel nonuniformities on the FPA can
corrupt the spectral imagery and reduce the ultimate per-
formance.

The spectral imager we study is similar to previously
reported chromotomographic devices,?"7 all of which im-
age a dispersed view of the entire scene over all of the
spectral bands and then computationally reconstruct the
chromatic image. In chromotomography the color imag-
ery is considered to be pseudo three dimensional. The
3D spectral image is obtained by use of tomographic im-
aging techniques similar to those used in medical imag-
ing. While chromotomography is computationally de-
manding, it has the advantage that a slit field stop is not
required. We anticipate that the spectral imager perfor-
mance will reflect the larger optical throughput afforded
by a larger field stop. The actual performance and poten-
tial multiplex advantage (or disadvantage) depend on
how well the reconstruction algorithms perform.

Our technique differs from other chromotomographic
approaches in several ways: We use a direct vision
prism to disperse the light; we have derived a reconstruc-
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tion method that is uniquely suited to our hardware
configuration;®® we have developed some new ideas for
dealing with some of the limitations of chromotomogra-
phy, and we have applied principal component analysis to
the characterization of our experimental data. Here we
describe the hardware, the reconstruction technique, and
the limitations of our approach. We demonstrate infra-
red spectral imaging and demonstrate infrared spectral
discrimination. We will also demonstrate that the im-
ager is robust to the FPA nonuniformities that often limit
infrared imager performance.

2. HARDWARE SCHEMATIC
REPRESENTATION

Figure 1 is a schematic representation of our approach.
It consists of a telescope, a direct-vision prism, and a cam-
era. A direct-vision prism consists of two prisms that are
arranged such that one wavelength passes through unde-
viated while other wavelengths are deviated along a line.
The direct vision prism is mounted in a bearing so that it
can be rotated around the optical axis. As the prism is
rotated the spectral features in the image will trace out
circles where the radius of the circles are wavelength de-
pendent. To produce a spectral image, a series of frames
of camera data are obtained with the prism in different
angular orientations, and then a computer is used to ex-
tract the spectral image from the measured data.

If in Fig. 1 the field stop were replaced by a slit, the
prism mount were fixed, and a mechanism for linearly
scanning the scene added, then the modified system
would be a standard scanned-slit spectral imager. In
both cases the throughput is determined by the f-number
and the field stop area. Since the f-numbers are the
same and the field stop area is much larger for the angu-
larly multiplexed configuration, it has higher throughput.

3. RECONSTRUCTION ALGORITHM

Other work in tomographic spectral imaging has relied
heavily on the tomographic reconstruction techniques
used in medical imaging. Here we develop a technique

© 1997 Optical Society of America
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Fig. 1. Schematic representation of the spectral imager and its operation. On the left, the direct-vision prism is shown spreading red, -
green, and blue light across the FPA. On the right, the effect of the prism rotation on the overlapping red, green, and blue images is

illustrated. The circles and arrows represent the prism orientation.

for inverting the system matrix directly. Direct matrix
inversion is typically not used for tomography for several
reasons, including that!®!! (1) the matrix is prohibitively
large, (2) a unique solution may not exist, and (3) no so-
lution may exist, owing to noise. Our inversion tech-
nique avoids these difficulties by first block diagonalizing
the matrix to reduce the size and then using singular
value decomposition to address matrix singularities.

We note that our system matrix is quite similar to that
of ectomography.!?-1# Tt is likely that the matrix inver-
sion technique that we develop here could be useful there
as well. In both cases all of the projections fall on the
same plane, and both suffer from limited viewing angle
(the concept of limited viewing angle is discussed in Sec-
tion 4). Other possible applications of our block diago-
nalization technique are diffractive-optic-type imaging
spectrometers'®!® and 3D microscopes.!”

Assume that we want to construct a three-color image
of a scene c(x, y, ). We divide the scene into three
spectral bands, ¢;(x, y), ¢co(x, ¥), and c3(x, y) (e.g. red,
green, and blue in Fig. 1). The action of the prism-
camera combination on the spectral image is to disperse
each of the colors relative to one another. For example,
with reference to Fig. 1, co(x, y) (green) is undeviated,
while for the first prism orientation ¢(x, y) and c3(x, y)
(red and blue) are deviated up and down, respectively.
As the prism is rotated, the angular orientation of the dis-
persion will change while its magnitude remains un-
changed.

Since an image displacement can be represented as a
convolution with a displaced delta function, the data re-
corded by the computer will be®

ri(x, y) = pya(x, y) #* cy(x, ¥) + pralx, ¥) ** ca(x, ¥)
+ piglx, ¥) ** c3(x, y)

ra(x, ¥) = palx, ¥) ** c1(x, ¥) + paglx, ¥) ** ca(x, ¥)
+ paalx, y) ** cslx, y)

ra(x, y) = pailx, y) #* c1(x, y) + paolx, y) ** ca(x, ¥)
+ p3alx, y) ** eglx, y)

ra(x, ¥) = paa(x, y) ** c1(x, y) + paalx, y) ** calx, y)
+ Paslx, ¥) ** cg(x, ¥), o))

where r,(x, y) is the data recorded for frame m at loca-
tion (x, ¥), ppm (x, ¥) is the point-spread function of spec-
tral band % recorded on image m, and ** indicates a 2D
convolution. Each of the ry(x, y), ro(x, ¥), rs(x, y), and
r4(x, y) correspond to the recorded image for a different
angular orientation of the direct vision prism.

Here each of the p,, ,(x, ¥) is a displaced delta function
and is given by

Pmi(®,y) = 8[x — (k — ko)Ax cos(¢y,),
y = (k = ko)Ax sin(¢,,)], @)

where Ax is the pixel dimension on the FPA, %, is the in-
dex of the undeviated color, and ¢,, is the angular orien-
tation of the prism on frame m. As the prism is rotated,
the imagery in spectral band %, is unchanged, while the
imagery from spectral band % orbits about that of 2, on a,
circular path with radius (¢ — ky)Ax. In Eq.(2) we have
assumed that the pixels on the FPA are square, and we
have defined the spectral band width as the change in
wavelength required to change the dispersive displace-
ment by one pixel on the FPA.

We wish to solve the system of equations in Eq. (1) for
cpx, ¥). First we take the spatial 2D Fourier transform
of each equation:

Ri(& 0 = P1a(& DC1(E O + Palé, DCa(§, O
+ Piaé, DCs(& D),

Ry(&, §) = Pay(& DC(E D) + Poyo(é, DCalé, O
+ Pys(€, C5(E, 0),

Rg(&, §) = P&, OC1(& §) + Paal€, DCa(€, D)
+ Pys(¢, DCs(é, &),

Ry(& ) = Pyi(€, DC1(E O + Pug(é, HCa(E, )
+ Pys(§, 0Cs(¢, D), (3)

where we use capital letters to indicate that we have Fou-
rier transformed, and ¢ and { are the spatial frequency
variables.

The form of Eq. (3) can be reduced to
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Ry(¢ 0)
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which is simply a large array of vector-matrix multiplica-
tions

R(¢, ) = P(¢, DC(E, ). (5)

Note that our large system of equations has been block di-
agonalized; we have a vector-matrix multiplication at
each spatial frequency rather than one large vector-
matrix multiplication. This block diagonalization is a
key computational consideration for our hardware real-
ization and subsequent data processing. For the hard-
ware implemented, we solve for 50 240 X 240 spectral im-
ages from a sequence of 80 240 X 240 input images.
Hence we invert 57,600 50 X 80 matrices rather than one
4,608,000 X 2,880,000 matrix. Since P(¢, () is system-
dependent and not scene-dependent, once computed, its
inverse can be stored and need not be recomputed until
the system is changed.

For the continuous case each of the P, ,(¢, {) is given
by

P, x(& ¢) = exp{—2mi[£ cos(o,,) + ¢ sin(¢,,)]
X (k — ko)dx}. (6)
P, (€ {) can be rewritten as
Pup(é, £) = Pp(v) = exp(—2miv - p), n

where p is the vector [(k — ky)Ax cos(e,,),
(B — ko)Ax sin(¢,)]. It can also be rewritten as

P (& §) = (exp{—2mi[¢ cos(¢,,)
+ ¢ sin(é,,)]Ax})E*0), ®)

where it is evident that each P(¢, {) is Vandermonde!® (P
has elements [p,,]¥). If the algorithm is to be imple-
mented on a computer, the expression for P, (¢ ) is
complicated by the fact that p may not fall exactly on a
pixel center. We address this issue by assuming that the
* effect on the four pixels nearest p is bilinearly weighted
relative to their distance from p. This is equivalent to as-
suming that the optical point-spread function is a uniform
square the same size as a pixel and that the pixels have
100% active area.

To this point we have neglected the effects of noise. If
we assume that the noise is additive, then Eq. (5) becomes

R(¢, ) = P&, 0)C(¢, §) + N(&, {), 9)

where N(¢, {) is the 2D discrete spatial Fourier transform
of the additive noise vector.

To solve for C(¢, ¢), we need to invert P(¢, (). Even
though efficient algorithms exist for inverting the Van-
dermonde matrix P(¢, £), two factors lead us to use the
singular-value-decomposition!® (SVD): P(£ {) is rectan-
gular, and for small values of ¢ and ¢ it will be singular.
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SVD faetors an M X K matrix into a product of an
M X K column-orthonormal matrix U, a K X K diagonal
matrix W with real nonnegative elements, and a K X K
orthonormal matrix V7,

P=UWV", (10)
Since U and V are column orthonormal, we find that
U'v=viv=1, 1)

where the dagger indicates Hermitian adjoint (transpose
conjugate). If all the w, ; are nonzero, the inverse of the
diagonal matrix W is illustrated by

Vwy, Wy
= [1]
(12)

We find that for an M X K matrix P we can make a
pseudoinverse VW 'U, such that

1=VWU'P. (13)

Vwg x Wk K

In the presence of noise we estimate C(¢, {) by C‘(g, ),
where

C(£ ) = V&, OWUE DU, DRI, £), (14)

where only the matrix W(£ () is potentially singular,
which occurs when one of its diagonal elements is zero.
In this application the noise in the recorded image data
r(x, y, ¢n) is effectively divided by w; ;(¢, {), so if the
value of any of the w, ;(£, {) is small, the noise will be
greatly amplified. To circumvent this problem, we re-
place W(¢, () with the diagonal matrix W™l(¢, ¢),
with elements

w; (& )
w; A€ ) + €&

The optimum value of € is data, noise, and spatial fre-
quency dependent; however, we typically use a constant
value on the order of unity.

The effect of singular matrices can be further investi-
gated by substituting for R(¢, ¢) in Eq. (14); we also drop
the explicit (¢, {) reference to simplify the expression:

C = VIWWVic + WlU'N]. (16)

The columns of V that correspond to the small values of
w; ; define the null space of our imaging system. From
Eq. (16) we see that in the null space both the scene in-
formation and the noise are attenuated. Sections 4 and 5
analyze the null space and describe our treatment of it.

We digress to introduce a notational variation that will
be useful later. In the preceding development we showed
that the measured data r could be described mathemati-
cally in terms of Fourier transforms and matrix multipli-
cations of the chromatic data ¢, where we organized the
various 2D images into 1D vectors. If we assume that all
of the housekeeping associated with reordering the data
is understood, it is possible to summarize Eq. (1) (with ad-
ditive noise) as

w; (& )= (15)

r=7"1727¢c+n, an
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where # is the 2D Fourier transform operator for the re-
ordered inputs ¢ and outputs r, and 7 is the block-
diagonalized assembly of matrices P. Though we are be-
ing cavalier with the details, this condensed notation
highlights the important issues and ignores distracting
indexing. We can extend Eq. (17) to include the SVD of
P,

r=7tur 7 7e + n (18)
We will find Eq. (18) useful in our discussion of filling in
the missing cone.

4. CONE OF MISSING INFORMATION

In general, when one of the w; ;(£, {) values becomes too
small, there is insufficient information to determine how
the measured signal should be distributed among the
spectral bands; information has been lost. Both Descour
and Dereniak® and Bernhardt’” demonstrated that the
missing information is similar to the missing cone in
some medical imaging techniques® (the illustrations in
Ref. 6 are particularly illuminating).

The origin of the missing cone is best understood in the
context of the Radon transform combined with the central
slice theorem.?! From the central slice theorem, we
know that the 2D Fourier transform of a projection is
equal to a slice through the origin of the 3D Fourier trans-
form of the spectral image. By rotating the prism, we ob-
tain different slices through the origin, each for a differ-
ent projection direction but with the same angle 6
between the projection plane and the optical axis (6 is de-
fined relative to the normal to the plane). In the limit of
an infinite number of different projections, the projections
will define a cone, where the half-angle of the cone vertex
is 8. Since none of the projections provide any informa-
tion about the image inside this cone, it is referred to as a
missing cone.

Figure 2 illustrates that the image through the direct-
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vision prism is analogous to a projection through the
pseudovolume defined by two spatial dimensions and one
spectral dimension. From Fig. 2 we can also identify the
cone (triangle in the figure) of missing information. To
estimate the impact of the missing cone on our imaging
system, we calculate the fractional volume of the missing
cone, which is determined by the projection angle 6. Our
interpretation of the projection angle is governed by (1)
our definition of adjacent spectral bands as displaced by
one pixel on the focal plane and (2) our assumption that
the volume object elements (voxels) are cubic. The defi-
nition is easily justified since it is consistent with scanned
slit configurations. The assumption is completely arbi-
trary but has the benefit of symmetric simplicity and
leads to a missing cone half-angle of 45 deg.

Another perspective of the missing cone is obtained by
analyzing the singular values of 2. When the singular
values are small, information is lost. We expect the
small singular values to define a conical shape. Figure 3
is a graphic representation of the values of w; ;(¢, ¢) il-
lustrating where in the frequency domain information is
lost. The dark regions in Fig. 3 are due to the missing
cone. Although the physical interpretation is identical to
that in Ref. 20, the mathematical treatment here differs
from that commonly found in the literature, since this
treatment uses a hybrid of Fourier-determined and SVD-
determined basis functions. Figure 3 also supports our
conclusion that the cone angle is 90 deg: at the highest
chromatic frequency, the cone diameter covers + Nyquist,
as we expect for the configuration illustrated in Fig. 2.

An intuitive understanding of the missing cone can be
obtained by considering the sequence of frames recorded
for a monochromatic source of infinite extent that is per-
fectly uniform. Since the source is uniform and of infi-
nite extent, the sequence of frames will be unaffected by
the rotation of the prism (if we consider a system with no
field stop). The same sequence of recorded frames would
be recorded for any wavelength monochromatic source or
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Fig. 2. Correspondence of our recorded data to Radon projections.

tral bands are displaced by one pixel on the FPA and the assumption that the object volume elements are equilateral.
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The projection angle follows from the definition that adjacent spec-
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image can be reconstructed in the frequency domain by using the central slice theorem (shown in both two and three dimensions).
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Fig. 3. Illustration of the w; ;(£,{) values as a function of spatial frequency. Each of these images corresponds to a horizontal slice
through the 3D representation of the spatial-spectral transform image on the right side of Fig. 2. Zero spatial frequency is in the center
of each image. Bright and dark regions correspond to large and small values of w, ;(£,{ ), respectively. The sequence from left to right,
top to bottom corresponds to descending chromatic-frequency data. The lower right image corresponds to image features that change
slowly as a function of wavelength (low chromatic frequencies). The upper-left image corresponds to image features that change rapidly
as a function of wavelength (high chromatic frequencies). The dark region in the center of each image corresponds to the spatial-

chromatic frequencies where information has been lost.

for any broadband extended source that was perfectly
uniform. Therefore there is no way to distinguish the
spectral content of a spatially uniform source algorithmi-
cally, and the zero spatial frequency information is lost.

Next consider a system with a slit field stop one pixel
wide, with the prism dispersion oriented normal to the
slit. Since the field stop is only one pixel wide, spatial
and spectral information do not overlap, and the slit ob-
ject is easily reconstructed from one projection without a
missing cone. We could also use our matrix formalism to
reconstruct the object; however, in this case the recon-
struction would suffer from a missing cone. We are left
to resolve why the missing cone is present with one recon-
struction and not with the other from what appears to be
the same set of data.

The difference arises because in the former case the in-
formation about the field stop is used in the reconstruc-
tion, whereas in the latter it is not. The field-stop infor-
mation can be introduced into the central slice
reconstruction by convolving the Fourier transform of the
field stop with the projection data. The slice goes from
being infinitely thin to having a finite thickness. For an
infinitely thin slit the slice becomes infinitely thick and
the missing cone is filled, or for a discrete system a slit
one pixel wide would completely fill the missing cone.

The field stop ./ could be included in the matrix formal-
ism as

r=7"Yvy 77 /¢ +n, (19)

where ./ defines the field stop and is a square diagonal
matrix with zeros and ones on the diagonal. Since both
7" and ./ are singular, the pseudoinverse must treat
them together. This fact destroys the block diagonal
structure of the matrix and makes direct inversion of the
matrix intractable for most applications. However, in
Section 5 we will show that an iterative technique can be
used to include the field-stop information in the recon-
structed image without losing the block diagonal struc-
ture of the matrix.

5. FILLING IN THE MISSING CONE

After the direct reconstruction, the missing cone occupies
26% of the object volume in the frequency domain.
Clearly this is an unacceptably large fraction of missing
information. In this section we discuss several methods
for reducing the fraction of missing information.

The first and easiest way to reduce the missing volume
is to filter the data.’® Figure 4 illustrates the effect of re-
ducing the chromatic resolution by a factor of 2. In this
case a rectangle function filter is used to pass only the low
chromatic frequency data (the figures and discussion in
Ref. 13 are illuminating). The effect of this filter is to re-
duce the fraction of missing information to 6.5%.
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Fig. 4. Schematic representation of how low-pass filtering, aug-
menting the data, and use of the field-stop prior knowledge can
be used to reduce the fractional volume of the missing cone.
Low-pass filtering reduces the chromatic resolution but preferen-
tially filters out missing information, the augmentative data fills
in the zero spatial-frequency axis information, and the field-stop
prior knowledge broadens all of the data samples.

The second approach is to use the field stop to fill in the
missing cone.”? As we discussed in Section 4, direct
methods for including the field-stop information fail be-
cause of the large computational and memory require-
ments of inverting the matrix %7 % directly. We
avoid this problem by using an iterative method similar to
those in Refs. 11 and 23. The idea is to find a solution
that is consistent both with our measured data and with
our knowledge of the field stop. We begin by construct-
ing a constraint .7 such that 7 ¢ is an altered version of
our estimate ¢ that is consistent with our knowledge of
the field stop. Then we transform .7 ¢ into the frequency
domain and replace the data values in the missing cone
with the values as modified by the constraint. We repeat
the process until some halt criterion is reached. In gen-
eral, the operator.7 need not be linear so that we can uti-
lize constraints such as nonnegativity.

The initial inverse gives the result

Gy = Frytwt Ay (20)

Subsequent iterations use the preceding results and the
constraint to fill in the missing cone

g =7 Yy Iy + £7FTE ), @D

where ¥ and .# are generalizations of L(¢, {) and
R(¢, ), which are diagonal with elements

w?i(& )

Liié )= 47—,
(& 6) wi g )+ B

(22)

and

R; (& () =1-L;(, 0), (23)

and S is a constant similar to e. From Egs. (22) and (23)
we see that % and ./ function as a switch that selects be-
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tween the left-hand and right-hand terms in Eq. (21).
Large values of w; (£, {) select the left-hand term (mea-
sured data selected outside the missing cone), and small
values of w; (& {) select the right-hand term (con-
strained solutions selected inside the missing cone). In
Fig. 4 we see that the effect of the field stop is to broaden
the data samples.

The third way to fill in the missing cone is to augment
the data set with an alternative spectral technique. In
particular we have found it useful to reimage the en-
trance pupil onto the field stop and extract the on-axis
component of the missing cone from the step response at
the edge of the field stop. This additional spectral infor-
mation can be incorporated into the constraint .7 in Eq.
(21). When combined with the field-stop constraint, the
information on axis is broadened, and our image recon-
struction very rapidly converges.

A clever technique that uses a zoom lens to fill in the
missing cone has been proposed by Bernhardt.” We did
not use Bernhardt’s technique, because an infrared zoom
lens with sufficient variation in power was not available.
We believe that some relief on the zoom-lens require-
ments can be achieved by incorporating the methods de-
scribed immediately above, but a demonstration of that
has been left for future work.

An additional technique for filling in the missing cone
will be introduced in Section 9 when we discuss the prin-
cipal components analysis of our data. We have not yet
investigated its utility and postpone its discussion until
after we have introduced principal components analysis.
Investigation of additional methods for reducing the frac-
tional volume of the missing cone is an area of continuing
research.

6. IMPLEMENTATION

We verified the operation of the spectral imager by using
a PtSi infrared camera imaging over the 3-5-um band.
The camera operates at /2.7 and uses a 320 X 244 FPA
obtained from FLIR Systems. We chose this FPA be-
cause it was noninterlaced and had a fill factor of more
than 80%. A Diversified Optical Products infrared
direct-vision prism was used as the disperser. The IR
camera, drive electronics, and 12 bit/pixel real-time con-
secutive frame data acquisition electronics were all built
in house.

The strong dependence of PtSi quantum efficiency on
wavelength »(\) has both negative and positive conse-
quences. While complicating calibration of the incident
photon flux, it compensates for the large imbalance be-
tween the photon flux at short and long wavelengths.
This compensated balance simplifies measurement of ob-
ject emissivity and makes PtSi an appealing candidate for
spectral imaging applications where measurement of ob-
ject emissivity rather than measurement of incident flux
is required.

A field stop 100 X 100 pixels on a side was mounted at
the real image in the telescope. In this infrared imaging
application the field stop is warm and emissive, so it pro-
vides the prior knowledge that it is uniform, but its inten-
sity is nonzero and the spectral distribution is unknown.
Since we are most interested in spectral discrimination,
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we chose to measure the scene spectrum relative to the
field stop. We could use this instrument radiometrically
by calibrating the field stop, but as yet we have avoided
this complication.

The format of the FPA dictated the size of the discrete
Fourier transform. We cropped the two top and bottom
rows and the 40 left and right columns to use a 240
X 240 Fourier transform by applying the Good-Thomas
prime factor algorithm described in Ref. 24. The soft-
ware to invert the data was written in house in C for So-
laris. The matrix decomposition was performed once for
a given configuration, and the result was stored in a file
on disk. Subsequent inversions accessed the data on
disk. The size of the file was reduced by using matrix
symmetry properties. If we assume that ¢,
= 27m/M, that 0 < m < M, that M is divisible by 4,
that 0 < k£ < K, and that m, M, k, ky and K are inte-
gers, then the following symmetry properties hold:

P ohg-r(& {)

Promnp(é §)

Pra(—¢ —0) - (24)
Poimip($, =€)
Pyp-mp(—§ )

In effect the decomposition of only one octant need be
stored. The symmetry was also used to reduce the data
from complex to real. The precision of the stored data
was short integer (16 bits). The size of the file for the
current configuration was approximately 100 Mbytes.
We believe that an additional reduction by a factor of 2 is
possible, but we have left it for future work.

The dispersion of the prism, the focal length of the final
lens, and the bandpass of the camera established that a
broadband point source was spread over 50 pixels (K
= 50). Inthe current implementation M = 80; we have
found this acceptable but suspect that it is not optimal.
The operation of the instrument consists of (1) digitally
recording the 80 projection images, (2) digitally recording
diffused image data with the prism oriented normal to
one edge of the field stop (supplementary data used to fill
in the missing cone), (3) performing the direct inverse, (4)
performing the iterative refinement calculations. For a
camera operating at 30 frames/s the data acquisition is
completed in less than 3 s. The data processing is com-
pleted in under 5 min on a Pentium Pro 200 computer.

Pm,k(gv {) =

7. EFFECT OF FOCAL PLANE ARRAY
NONUNIFORMITY

Before we demonstrate the operation of the spectral im-
ager, we would like to highlight one of its most important
characteristics (especially in infrared imaging). Infrared
imagery is characterized by low-contrast details on a
large background pedestal. Pixel-to-pixel nonuniformi-
ties on the FPA interact with the large background ped-
estal to create a spatial noise pattern in the imagery.
This effect is well documented’ and played a large role in
the evolution of infrared imagers. Therefore we expect
FPA nonuniformity to play a large role in the develop-
ment of infrared spectral imagers, and we must consider
the effect of FPA nonuniformity on our measured data.
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As the prism rotates, the nonuniformity is spatially
fixed on the FPA and coincides with the undeviated spec-
tral band (also fixed). Additive nonuniformities will be
entirely consistent with image features in the undeviated
spectral band and will be treated as such by the inversion
algorithm. Therefore the undeviated spectral band will
be corrupted by FPA additive nonuniformities, while the
other spectral bands will not. Note that this effect is
much stronger than simple averaging, because we have
inverted the system matrix. The system could be de-
signed such that the corrupted band coincides with an at-
mospheric absorption band or some other band of little in-
terest in order to minimize the effect of nonuniformity on
spectral discrimination.

The effect of multiplicative nonuniformities is domi-
nated by the interaction of the nonuniformities with the
large background pedestal. Since the background pedes-
tal is independent of prism rotation, the bulk of multipli-
cative nonuniformities will again be mapped to the unde-
viated spectral band by the inversion algorithm, and a
similar argument can be made for the spectral nonunifor-
mity interaction with the background pedestal. We find
that the vast majority of nonuniformity effects appear in
the undeviated spectral band.

The fraction of the multiplicative and higher-order non-
uniformities that interact with low-contrast image de-
tails, the higher frequency component of the 1/f noise
(drift that occurs during data acquisition), and the inter-
action of the spectral nonuniformities with the low-
contrast details will all appear as noise. These higher-
order terms are almost always negligible. The inherent
robustness of this technique to FPA nonuniformity and its
high throughput are the two major technical reasons for
considering this spectral imaging approach.

8. DEMONSTRATION

To demonstrate the operation of the spectral imager, we
imaged a laboratory scene that contained objects with dif-
ferent spectral signatures. We used a controlled labora-
tory scene so that we could investigate the effect of the
missing cone on spectral reconstruction and spectral dis-
crimination. We note in passing that the standard tech-
nique of imaging the exit slit of a monochrometer to cali-
brate the spectral imager will give optimistic results,
since a slit object has a lot of high-spatial-frequency en-
ergy that falls outside the missing cone. Our demonstra-
tion scene consists of extended objects, where a large frac-
tion of the scene energy falls inside the missing cone,
creating more of a challenge for our reconstruction algo-
rithm.

A visible image of the scene is shown in Fig. 5. It con-
sists of a differential source and a reflective plate. The
differential source consists of two plates one in front of
the other. The front plate has a four-bar pattern of holes
so that the back plate can be seen through the holes. The
back plate is held at a temperature elevated above that of
the front plate so that in the infrared the source appears
as four bright bars.

The reflective plate was illuminated with an incandes-
cent lamp that was controlled by a variable autotrans-
former. The lamp voltage was adjusted so that in the



2958 J. Opt. Soc. Am. A/Vol. 14, No. 11/November 1997

Fig. 5. Visible image of the scene used for the demonstration.
The reflective plate and differential source are illuminated by an
incandescent lamp. Here the lamp intensity is much greater
than when the experiment was performed so that the reflected
light can be seen.

Fig. 6. Broadband infrared image of the scene used for the dem-
onstration. Here the field stop limits the field of view to the cen-
tral 100 X 100 pixels.

broadband infrared image the signal from the reflective
plate matched that of the differential source. A broad-
band infrared image of the scene is shown in Fig. 6. We
expect three major spectral signatures (the background,
the hot bars, and the reflective plate) and hope to use the
differences between the spectral profiles of the plate and
the bars to distinguish between them.

Figures 7 and 8 illustrate one of the projections and one

- of the spectral reconstructions, respectively. The spec-
tral profiles of a pixel in the plate and of a pixel in a bar
are shown in Fig. 9. Since the illumination of the plate is
intended to simulate solar illumination, the plate profile
is labeled “Solar”. We see that the Solar profile is larger
at short wavelengths while the thermal profile is larger at
long wavelengths and that the profiles cross at approxi-
mately 4.1 um. The spectral notch at 4.27 um is due to
absorption by CO, in the atmosphere.

Our goal of spectral discrimination relies on the fact
that each of the three principal components of our scene
(bars, plate, and background) has a spectral signature
that is distinct from that of the other two components.
Since our reconstruction of the scene consists, after data
filtering, of 25 spectral bands, each of the spectral signa-
tures can be represented by a point in 25-dimensional
space defined by the 25 spectral bands. Since our scene
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consists of only three objects and since three objects de-
fine a plane, we can reduce the dimensionality of our
scene by finding the two axial components required to de-
scribe the plane on which our three object signatures fall.
Identifying the principal components of a scene in this
manner is called principal component analysis®; spec-
trometers that gather many more spectral bands than
there are principal components are referred to as
hyperspectral. 2

In order to identify the two basis spectra that describe
the principal components plane, we again utilize SVD
(note that the matrices, singular values, and eigenvectors
that follow are distinct from those in Sections 3-6). Each
pixel’s spectral profile is used to form the rows of a matrix
that we decompose using SVD. The decomposition yields
singular values, spectral eigenvectors (columns of V), and
spatial eigenvectors (columns of U). The spectral eigen-
vectors that correspond to the two largest singular values
define the 2D basis in spectral space that defines our prin-
cipal components plane.

The two spatial eigenvectors that correspond to the two
largest singular values define the plane on which all three
object fall. In Fig. 10 each pixel is represented by a
bright point on our principal components plane. In the
figure we see that the pixels associated with the back-
ground, plate, and bars are distinguishable from one an-
other. The pixels that lie between the bars group and the
background group are pixels that fall on a bar edge. The

Fig. 7. One of the 80 projections. Here the blurring is due to
the prism dispersion.

Fig. 8. One of the 50 spectral reconstructions before filtering.
This reconstruction corresponds to 3.8 um.
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Fig. 9. A comparison of single-pixel spectral profiles from the

reflective plate, ‘Solar’, and a hot bar, Thermal, before filtering.

The spectral profiles shown are measured relative to the field
stop, which we have assumed to be spectrally flat.
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Fig. 10. Scatterplot of the spatial-spectral image data, made
with the two leading terms of the SVD. The indicated display
axis corresponds to the left image in Fig. 11.

Fig. 11. Spatial display of the spectrally discriminated objects.
The center image is a broadband image. On the left the display
axis is oriented to map the plate and the background to the same
level and therefore accentuate the bars. On the right the plate
is accentuated.

fraction of the pixel that is filled by the bar can be deter-
mined from its location relative to the two groups.

In Fig. 11 we have linearly combined the two spatial
eigenvectors to accent the bars or the plate by rotating
the display axis. The left image in Fig. 11 corresponds to
the display axis as shown in Fig. 10. Both Fig. 10 and
Fig. 11 show that this approach to spectral imaging is ef-
fective as a spectral discriminant.

9. ANALYSIS OF THE ITERATIVE
ENHANCEMENTS

We have not yet established a meaningful metric to quan-
tify the performance of the spectral imager for all situa-
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tions. Although the high optical throughput gives us rea-
son to be optimistic, the extent to which the missing cone
will degrade performance is not clear. The nature of the
missing cone implies that the performance will be data
dependent, and our techniques for filling in the missing
cone make the data dependence difficult to identify. In
this section we address the effect of our fill-in techniques
on the fidelity of our reconstructed spectral imagery.

Since the demonstration scene was designed to create
data that can be represented by two eigenvectors, analy-
sis of the remaining eigenvectors provides information
about the effect of the missing cone on the reconstructed
image. Further, by analyzing the singular values as a
function of the iteration number, we can estimate how the
quality of the reconstruction improves as we iterate.

Figure 12 is a plot of five of the singular values as a
function of number of iterations. The scene information
is represented by the largest two singular values; the
missing cone artifacts are represented by the third and
lower singular values. Noise is present in all of the
eigenvectors and becomes dominant for the smaller singu-
lar values. Our assumption that the scene information is
separated from the missing-cone artifacts is supported by
the lack of any dependence of the largest two singular val-
ues on iteration.

In Fig. 12, we see that the third largest singular value
is most affected by the iterative process; its value drops
by almost a factor of 3 after four iterations. The spatial
eigenvector corresponding to the third-largest singular
value is shown in Fig. 13. - The hypothesis that Fig. 13
represents a missing-cone artifact is supported by the fact
that the dark edge around the bottom part of the plate
and the bright areas between the bars are inconsistent
with the physical attributes of the scene.

From this analysis we conclude that the iterative pro-
cedure has reduced the effect of the missing cone by a fac-
tor of nearly 3. Given that the filtering had reduced the
fractional missing-cone volume to 6.5%, we estimate that
the postiteration missing fractional volume is just above
2% for this particular scene. We could use this approach
to reduce further the missing-cone artifacts for this par-
ticular scene by eliminating the third and higher eigen-

104 T T T T T T T T T

Singular Value
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Fig. 12. Four largest and smallest singular values as a function
of number of iterations. The decline of the third largest singular
value for the first few iterations indicates the effectiveness of the
iterative techniques for filling the missing cone.
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Fig. 13. Enlarged view of the spatial eigenvector corresponding
to the third-largest singular value (artifact due to the missing
cone) after five iterations. The ringing at the plate edges is in-
dicative of lost information.

vectors from reconstruction altogether, but then we could
no longer use the principal components analysis to evalu-
ate the results.

It is also possible that the principal components analy-
sis could be combined with the iterative procedure to
eliminate the missing cone entirely. By modifying the
constraint .7~ so that .7 ¢ consists of only the principal
components, the data in the missing cone is forced to be
consistent with principal components. If the weighting
of the principal components is not ambiguous in the miss-
ing cone then the missing cone could be completely filled.
Although development of these ideas remains for future
work, we are optimistic about the prospects for eliminat-
ing the missing cone.

10. CONCLUSIONS

We have described and demonstrated a high-throughput
approach to spectral imaging that is also robust to FPA
nonuniformities. We demonstrated our approach in the
midinfrared, but it is generally applicable to any spectral
band where two-dimensional imaging arrays and direct-
vision prisms are available. The high throughput and ro-
bustness to FPA nonuniformity mean that this approach
_can be used with nonuniform high-quantum-efficiency
FPA’s to minimize the amount of time required to collect
high fidelity hyperspectral image data.

We have also shown that this approach is subject to a
cone of missing information. In particular, the low-
spatial-frequency/high-chromatic-frequency information
is missing from the resulting spectral imagery, which
leads to limited degradation of the image quality.. We
demonstrated that by filtering and using iterative tech-
niques, we could reduce the fractional volume of missing
information to approximately 2%. In the process of ana-
lyzing our data, we demonstrated that principal compo-
nents analysis is a useful tool for identifying artifacts in
image sequences and indicated that it might be useful for
eliminating the missing cone. For scenes with substan-
tial spatial structure, this is a promising approach for
spectral discrimination.
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