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We review a powerful temporal-based algorithm, 2 triple
temporal filter (TTF) with six input parameters, for defecting
and tracking peint targefs in consecutive frame data acquired
with staring infrared (IR) cameras. Using an extensive data set of
locally acquired real-world data, we used an iterafive optimization
technique, the Simplex algorithin, to find an optimum set of
input parameters for a given data set. Analysis of correlations
among the optimnom filter parameters based on a representative
subset of our database led to two improved versions of the
filter: one dedicated to noise-dominaied scenes, the other to
eloud clutter-dominated scenes. Additional correlations of filter
parameters with measures of clutter severity and target velocity
as well as simulations of filter responses to ideatized targets
reveal which features of the data determine the best choice of
filter parameters. The performance characteristics of the filter
is detailed by a few example scenes and metric plots of signal to
clutter gains and signal to noise gains over the total database,
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I, INTRODUCTION

We are investigating the potential for staring
focal plane infrared (IR) arrays to carry out an
Infrared Search and Track (IRST) mission [1]. As the
centerpiece for such a function, modern staring IR
technology promises passive day and night operation,
high sensitivity, and high frame rate. The rapid frame
rate increases the correlation in time of evolving
clutter (such as clouds). Hence, temporal signal
processing algorithms should offer superior clutter
rejection to that of the standard spatial processing
approaches [2]. The desire to maximize target
detection range focuses attention on algorithms for
detecting and tracking point targets. Targets of interest
and current staring camera parameters, such as IFOV
and frame rates, translate into point targets which
move only fractions of a pixel per frame time. Our
search for and development of the requisite temporal
algorithms is closely guided by real-worid data with
airborne targets of opportunity. Such data has been
acquired with on-hand, state of the art staring IR
cameras.

We have identified and reported a new class
of temporal filters [3, 4] whose ease of hardware
implementation and inherent lack of response to
evoliving cloud clutter offer great potential for
the IRST application. A survey of the historical
development of tracking point targets in the IR is
presented in these earlier reports. We tested many
of these approaches in our effort to implement a
staring-based IRST. Our temporal filter approach
is in the spirit of recent techniques which use
multiple frames in retaining and updating target
probability values for each pixel with no premature
thresholding [5, 6]. This is achieved through a
recursive implementation with a weighting of past
history.

The design and test of these filters has been
closely controlled by real-world data which has
dictated a somewhat empirical approach. The
first reports [3, 4] of our temporal filters focused
exclusively on the evolving cloud scenario and
compared their performance with that of our initial
approach: a bank of spatio-temporal velocity filters
[71. In later work [8], we concentrated on the temporal
filters emphasizing issues and trade-offs in choosing
their free parameters. We identified parametric
variations with better signal to temporal noise (as
contrasted with signal to cloud clugter) response
which gave improved performance in clear sky scenes
but showed increased cloud clutter leakage in other
scenarios.

Here we address a problem of increasing
importance. As algorithms with parametric variations
are used to process real data in real-time hardware,
how can one systematically and effectively incorporate
such data in the design (not just the test) of such
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algorithms? Algorithm types which incorporate
training sets into their design, such as neural nets,
attempt to meet this need. The approach discussed
here is to use the Simplex algorithm to find the
most successful parameter set for a given algorithm
working on a given data sequence in terms of
optimum target to nontarget response. We have
used very extensive real-world IR data with moving
airborne targets and complex evolving cloud clutter
in an attempt to optimize these promising temporal
filters for point target tracking. The data includes
clear sky scenes, both night and day, and a variety
of challenging evolving cloud scenes. The targets
of opportunity contained in the data base exhibit
wide variation in target focal plane sampling as well
as focal plane velocities: from about 0.02 to 0.50
pixels/frame (p/f). By examining the correlations
among the filter parameters over our data base,

we have identified significantly improved forms

of our algorithm. Further, simulations of filter
performance on ideal embedded targets as well

as correlations with clutter severity and target
velocity have led to a clearer picture of filter/data
interactions and internal filter parameter constraints.
While six parameters are explicitly present in the
filter description, the parameter choice of the main
period of the filter tightly constrains the optimum
choice for the other five. While we hoped to find
one set of parameters “for all seasons,” our results
showed clustering about two parameter sets: one
optimum for clear sky and benign (stationary)
clond scenes, the other for challenging cloud
scenes.

Our presentation is organized as follows. Review
of the temporal filters and their parameter base is
presented in Section IL Description of the process of
optimization is found in Section IIl. The analysis and
conclusions of the optimization results are in Section
IV. Performance characterizations of the improved
iracking fiiters is in Section V, and conclusions and
future work plans are presented in Section VL

IIl. TRIPLE TEMPORAL FILTER

The generic form of our filter weights the data of
each pixel in time by a zero-mean damped sinusoid
as shown in Fig. 1. The zero-mean property insures
that it will only respond to pixels changing in time.
The filter responds very weakly to changes that are
monotonic over long time spans, but strongly to
temporal profiles which rise and fall over briefer
periods. Fig. 2 shows the typical monotonic temporal
profile of a drifting cloud edge as contrasted with the
temporal profile of a target, which rises and falls as
the target passes through the pixel. The intensity of
the target scales the profile height, while the inverse
of the target velocity scales the width. Therefore, the
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Fig. 1. Example of generic tempozal filter: zero-mean damped
sinusoid of period 16 frames and half-damping 16 frames. Circles
indicate discrete frame intervals.
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Fig. 2. Temporal profiles over 93 consecutive frames of two
pixels in daytime cloud scene: one traversed by moving point
target, the other with entering cloud edge.

filter inherently responds to moving points and rejects
stationary objects and moving edges.

In order to minimize hardware complexity, we
implement the damped sinusoid recursively by means
of the expression

Lpal = zkaem + dk+le‘¢ (1

where z; is the complex output of the kth iteration,
« is the damping constant {memory persistence)
between zero and one given by €803/ [ is the full
width at half max of the exponential decay, 6 is the
angular shift per iteration in the sinusoid filter given
by § = 2n/P where P is the period of the sinusoid in
number of frames, 4, , is the next pixel data value,
and the phase ¢ is given by

tan(¢) = (1 — acos(#))/(asin(8)). (2)

 is that phase shift of the sinusoid which ensures
that the real part of z; has zero response to a constant
intensity signal. Since we would like to threshold

the results to clearly distinguish point targets from
residual clutter, the filter is completed by taking the
absolute value of the real part of z,. By applying
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Fig. 3. Notation used for 3 by 3 neighborhood about center
pixel P.

a second sinuseidal filter to the output of the first
filter, we found that the resulting composite filter
was sensitive to a broader velocity range, had better
S/N response and had a weaker response to clouds.
Finally, a third decaying exponential (averaging)
filter was applied to the output of the second filter
to dampen the ringing intrinsic o sinusoids. The
resulting composite triple terporal filter (TTE) is
specified by five parameters: F, (P, I, )55 (R, L)L),
where the subscripts refer to the first, second, and
third filters, respectively. The optimization of these
five parameters is the main subject of this work. Unti
now filter parameter values have been selected in
conjunction with real data largely by trial and error.

The filter so far described is a one-dimensional
filter; each pixel is filtered independently in time. We
have found edge suppression for data with evolving
strong cloud edges to be a nseful spatial adjunct to the
temporal algorithm. An obvious spatial discriminant
between a true point target and a point-like cloud
feature is the likely presence of the latter at an edge.
A measure of the edge strength Sy, x associated with
a given pixel can be taken as the maximum absolute
value obtained from the set of 4 subtractions within
the 3 by 3 neighborhood which straddle the pixel:
H —Hp Voo Vg D) — Dy D, —- D, (Fig. 3). We
reduce the output of the first filter of the TTF by
the edge factor | Sy x/E]| + 1, where E is an edge
parameter which scales the edge strength and | |
represents truncation to the next lower integer. Such
a spatial adjunct is an effective discriminant unless the
target is on several pixels, in which case it is typically
closer and stronger and can survive reduction by the
edge factor. E is the sixth parameter included in a
given TTF specification.

Qur early work focused on detecting point targets
in evolving cloud clutter [4]. We developed and
characterized the TTF specified by the foliowing
six parameters: F; (16, 16)E(64)F, (10, 10)F;(5). This
“tracker” was implemented in hardware and was
found to have good clutter suppression characteristics
but limited signal to temporal noise response,
particularly for slow targets. The shoricomings of the
F(16,160)E(64)F,(10,10)F,(5) TTF were supported
by the results of a simulation of idealized slow targets
embedded into Gaussian white temporal noise. We
have developed TTF filters that have better S/N
response characteristics and improved slow target
detection performance, as reported recently [8].
However, to achieve reasonable cluiter suppression,
these filters required very strong edge suppression,

i.e, small values of E, which cause targets in front of
clouds to be lost.

Until now we have chosen the parameters largely
from intuition and experience, incorporating certain
reasonable constraints such as P = [ to simplify the
search. The richness of the parameter space plus
the quantity and variety of real data made such a
semiempirical approach problematic, since we had
hoped to find one tracker for ail conditions and a
wide variety of point targets. We next describe the
process which enabled us to analyze the interaction of
the data with the algorithm and to extract improved
parameters, -

5. OPTIMIZATION PROCESS

We sought to find an optimal set of parameter
values for the TTF averaged over a representative
sample of our extensive database. Our approach
was to use an automated routine to find the six best
parameters for each data set and then to analyze the
resulting parameter sets to see if an average set could
be identified or a correlation between parameters
found.

Two PtSi IR cameras, both fabricated in our
laboratory, were used to acquire the data. The focal
plane array (FPA) of camera 1 was obtained from
David Sarnoff Research Center; the FPA of the second
camera was obtained from FLIR Systems Inc.. The
format of both arrays is 320 by 244 pixels with
square pixel sizes of 40 um for the first and 24 pm

for the second array. Data was taken with the first

camera using a 50 mm and a 200 mm lens, while that
taken with the second camera used a 100 mm and a
200 mm lens. These combinations gave total fields of
view of 14.6, 4.4, 3.7 and 2.2 deg, respectively. Frame
rate for each camera is 30 s~ with standard interlace
format. The performance of both cameras is similar to
those previously characterized [9].

The data from the cameras was recorded to 12 bit
precision using a digital cassette recording system or
a laboratory-developed frame-grabber. Sequences of
95 consecutive frames were selected for algorithm
evaluation and added to an archive of real-world
test data on UNIX work stations. The requisite
hardware and software for data recording, transfer,
and algorithm development were developed in our
laboratory.

The “optimum™ filter parameter values for a
given data set was determined from the Simplex
routine [10]. A given data set consisied of about
3 s of consecutive frame data (95 frames) with one
moving point target. For scenes with multiple targets,
a separate optimization is run for each target. The
optimization process was run on a representative
subset of all our real data {some 22 data sets). At least
one sequence of data from each day or evening 12 bit
digital recording session was used.
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The Simplex routine features an iterative algorithm
which minimizes a selected function of a set of
input variables. Our chosen variables were the 6
input parameters of a TTF filter and our chosen
function was the clutter to signal (C/S) ratio of the
TTF filtered output. C/S for each frame is taken
as the ratio of the largest non-target-related pixel
output to the largest target-related output. C typically
stems from a cloud edge for cloud scenes or a noise
fluctuation for clear sky scenes. The final C/S for a
- given filter parameter set is the average over the set of
frames after reaching a steady-state result (steady-state
is achieved by the last 40 frames). The optimization
process works as follows, The initial parameters are
sent to the Simplex routine; the TTF filtered output is
calculated and its corresponding C/§ is determined.
The Simplex routine determines six new parameters.
Once again, the TTF output and its corresponding
C/S is calculated. This process is repeated until C /S
1s no longer changing within a predetermined limit
oOr a set number of iterations has been reached. A
200 MHz Pentium-Pro-based computer takes about
30 min to complete one optimization.

We should emphasize that this application of
the Simplex algorithm involves a very complex
multiminimum function space in which some 7.4
million data points (320)(244)(95) are processed
by a 6 parameter filter. The iterative minimum
reached is a function of the starting parameters to
a degree dependent upon the particular data set.
We have run extensive optimizations with both the
F1(35, 10)E(64)F,(35, 10)F,(10) TTF (identified
previously by trial and error as having improved
signal to noise response) and the previous baseline
tracker: the F,(16, 16)E(64)F,(10, 10)F;(5) TTF as
starting points. We present the results for the former
as lower C/S ratios are generally achieved and a
coherent picture emerges with this start, atthough
we have no assurance of having reached a global
minimum.

V. ANALYSIS OF OPTIMIZATION RESULTS

Each optimization on a sequence of data gave a
new set of “optimized” filter parameters as well as an
mmproved C/§ output value. We have examined the
optimized filter parameters in the form of pairwise
correlation plots. The correlations taken in conjunction
with idealized filter responses are then used to
elucidate the relationship among the scene clutter,
the target velocity, and the filter parameters. Finally,
we use the correlation plots to choose improved filter
parameters.

A.  Analysis of Correlation Plots

Fig. 4 shows a plot of the half-damping constant
of the first filter /; versus the period of the first filter
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Fig. 4. Correlation of /; versus F,. Data sequences where
nontarget leakage is dominated by clouds (o) are distinguished
frem those dominated by temporal noise (x). Linear regression

line here and in succeeding figures use minimum square distances

perpendicular to line {uot those along one of the axial directions).

See text for discussion of points labeled 1, 2, 3 and the two black
Tectangular points.
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Fig. 5. As Fig. 4 for F, versus P,.

£ (correlation coefficient r = —0.73). Values of the
clutter-dominated scenes are differentiated from the
noise-dominated scenes. In the former, maximum
nontarget filter response stems from cloud evolution.
In the latter, the highest nontarget filter response
stems from temporal noise fluctuations. A clear sky
or a sky with stagnant or dim clouds are examples

of noise-dominated scenes. The three problematic
clutter points are numbered and are discussed later
on. Note that, within the linear trend, there are distinct
clusters of noise data points and clutter data points,
the “centers” of which are indicated in Fig. 4 and are
also discussed later. Fig. 5 shows a plot of the period
of the second filter P, versus the period of the first
filter . A similar linear trend is observed, aithough
the scatter is considerably greater (r = —0.18). [, and
I; when plotted versus P, (not shown) scatter in value
from 8 to 13 with a slight upward wend with period.
There is a smooth linear correlation between edge

E and the period of the first filter £ (r = 0.95) as is
shown in Fig. 6. As P, increases, a larger E value is
needed, i.e., weaker edge suppression (see Section II).
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Fig. 6. As Fig. 4 for E versus F.

Although we anticipated some relationship
between the parameters, the observed correlations
were unexpected. We had expected that slower targets
wouid be best detected by longer period filters, but
instead found that target velocity is not the leading
factor in determining the optimal filter parameters.
The filters are nonlinear and thus we endeavored to
understand the filter operation and the correlations by
simulation.

The simulations were divided into three parts:
targets, clutter, and temporal noise. For each of the
simulations we examined the output of /|, F,, and F;
(we did not simulate the edge filter). Ideal targets with
velocities of (.25, 0.1, and 0.05 p/f were simulated.
Cloud clutter was modeled by a linear ramp that
increased in intensity by one unit per frame. The noise
was computer-generated white Gaunssian noise.

Fig. 7 illustrates the general trends observed in our
simulation. In Fig. 7{a) and 7(b) we show the output
of F| to an ideal target moving at 0.1 p/f and the ideal
clutter (ramp) for the parameter values F,(17,13) and
£,(43,9) (chosen from the “centers” in Fig. 4}. Not
shown is the response of the two filters to temporal
noise which is about 15% larger for 7(17,13) than
for F,(43,9). While the response to the targets is
somewhat greater for F,(43,9), its response to (ideal}
cluiter is also much greater. The trends seen in Fig. 7
generally hold up over the simulated range of velocity
and after application of the full TTF algorithm leading
us to the following broad conclusion. The simulations
predict that the severity of the clutter will be the main
driving force in determining the optimal parameter
values of the first filter. The target velocity is a
significant factor only in cases were the temporal
noise dominates. :

Returning to real data, we note that Figs. 8 and ¢
support these predictions. In Fig. 8, F| is plotted as
a function of clutter severity. The clutter severity is
quantified using the standard deviation in time of each
pixel over the entire image sequence [113. Only the
data from the cloud-cluiter dominated scenes is plotted
in Fig. 8. We see that the image sequences with the
largest clutter values are strongly correlated with the
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Fig. 7. Simulated temporal responses after application of single
damped sinusoids, F{17,13) and F}{43,9) to: (a) idealized target
with velocity of 0.1 p.f, and (b) idealized cloud simulated by
linear ramp.
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Fig. 8. Correlation of F| versus measure of severity of clutter
evolution for clutter-dominated data sequences.

lowest values-of P,. Those image sequences with the
smallest clutter values are not as strongly correlated
with .

In Fig. 9, A, is plotted versus target velocity. The
target velocity is measured by dividing the number
of pixels traversed by the number of frames for
both horizontal and vertical directions and adding
the two values in quadrature. Only the data from
the noise-dominated scenes is plotted in Fig. 9.
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Fig. 9. Correlation of P, versus measure of target velocity for

. hoise-dominated data sequences. Solid line is linear regression;
dotted line is from simple model.

The image sequences with the largest velocities

are correlated with the lowest values of £. The
anticipated correlation of longer periods with slower
targets is generally found (correlation coefficient

of ~0.57). The data used in this plot was largely
acquired at night when weak, slow targets (< 0.1
p/f) were abundant and cloud eveolution was absent,
The predicted trend (dotted line) is from a simple
model which equates the time width of the sinusoid
lobes F, /2 with that of reciprocal velocity 1/v in
frames/pixel. Much of the lowest velocity data are
well below the expected period; however, many weak,
slow targets have jagged temporal profiles (due to
camera motion) with segments which mimic the
profiles of faster targets.

Further examination of ideal profiles for the
sequence of component filters which constitute the
TTF elucidate the internal dynamics of the filter
and the influences constraining parameter choice
after P, is selected. Shorter period P, values need a
longer period B, (see Fig. 5) to capture multioutputs
of the first filter. As the first period increases, the
output concentrates in fewer peaks which are slightly
narrower than the initial temporal profile, favoring
a second filter slightly lower in P value than the
first. The narrow ranges found for !, and I, values,
generally from 8-14, are a trade-off between keeping
the integrity of the first few sinusoid lobes (longer
damping constants) and avoiding the excess noise
which longer damping constants introduce. The
dependence of the edge parameter on £, shown in
Fig. 6 is a consequence of the edge filter enhancing
performance in clutter and degrading performance in
temporal noise. Small edge parameter values (strong
filter output suppression) are required in heavy chutter
and coincide with small A values,

Finally, note the three numbered deviations from
the correlation trends in Figs. 4 and 5. Point 1 has
the difficult combination of very severe clutter and
very slow target velocity (= 0.01 p/f) setting up
conflicting requirements for F|. Point 2 is in front of

clouds. Point 3 remains unexplained. Note that in the
correlations of Fig. 6, only point 2, requiring a milder
edge suppression, remains anomalous. None exhibit
anomalous behavior in the correlation with clutter

(Fig. 8).

8. New Choices of Filter Parameters

The correlation plots served as a guide in choosing
new filter parameters. To start the process with Fig. 4,
we note that clutter-dominated data points tend to
cluster toward one end of the range of values found
and noise-dominated data points toward the other
end. The choice of two new filters at the positions
indicated at the solid rectangles in Fig, 4 (and the
two following figures) is designed to span this range
as well as favor the clusters. The first filter for
cloud-dominated scenes {cloud tracker, (CT)} is taken
as F{(17,13) and for noise-dominated scenes (noise
tracker, (NT)) is taken as F}(43,9).

With F, fixed, we follow a similar philosophy in
using Fig. 5 to choose P, as 44 for the CT and 35 for
the NT. Plots not shown indicate narrow scatter for
I, and /5 and little trend with £, or F,. The value of
10 is selected for both trackers for [,. A value of §
is chosen for I,, because it is easier to implement in
hardware. Finally the edge value strengths are chosen
from Fig. 6 (shifted to the nearest power of two again
for hardware convenience). In summary, the two new
TTF filters are F;(17,13)E(32)F,(44,10)F,(8) for CT
and F (43,9)E(64)F,(35,10)F;(8) for NT.

V. PERFORMANCE OF IMPROVED FILTERS

The improved performance of the NT and CT
filters, cbtained by the optimization process, is
detzailed by a few typical examples after which metric
plots for our total data base are shown.

A. Representative Examples

In this section, we illustrate some typicat
performance improvements by two example scenes
from our data set. The presentation is based on input
and output images. The two input images consist
of a single frame of the scene with target locations
indicated by rectangular outlines, and a linearly
displayed image of the standard deviation of the
intensity of each pixel over 95 temporal frames. The
latter itnage serves as a relative measure of target
versus clutter changes with time. Results are indicated
by output images of filtered frames displayed on a
linear scale, typically, the TTE-filtered result after 95
frarnes of data processing,

Example 1 is a challenging example of cioud
clutter; there is one target moving at 0.2 p/f in the
horizontal and 0.02 p/f in the vertical direction ini
clear sky among many brightly sunlit clouds moving
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Fig. 10. Results of three tracking filters applied to daytime cloud seene. (2) Exanpie input frame with peint target indiczted by white
oulline. (b) Temporal standard deviation after 93 input frames displayed a3 linear image, white outline indicates region of target
mevement over frames, (¢) NT result, (@) CT result. (e) ET result.

horizontally about 0.03-0.04 pff. The results of

the following three filters are shown in Fig. 10:

the two new tracking filters, CT and NT and our
previous baseline filter, Fi(16, 16)E(64)5 (10, 10)E(S),
designated as the empirical wacker (ET).

The NT result for such a scene is dominated by
clutter; the highest target value is less than the highest
cloud leakage value, The CT result suppresses the
clouds and the target value is about three times the
cloud leakage value. The ET result also brings the
target above the cloud leakage, but only by 1.8 times.
Increasing the edge suppression of the ET (not shown)
slightly improves the results, but the CT result is stzll
superior.

CAEFER ET AL.: OPTIMIZATION OF POINT TARGET TRACEKING FILTERS

Ower next example features a noise-dominated case
with two targets. The “fast” target (left) is moving
at v, =0.33, v, = 0.03 p/f and the slow target (right)
is moving at v, = 0.04 p/f, v, = 0.02 p/f. The same
three filters were used as in the first example. The
NT gave superior results as is shown in Fig. 11. The
left target response was 7 times the largest noiss
value and the right target was 6 mes the largest
noise fluctuation. The CT and the ET were able o
bring the targets above the noise, but to a far less
extent than the NT. The CT results were 1.5 and
2.3 and the ET results were 1.7 and 2.6 times the
largest neize fluctuations for the left and right targets,
respectively.
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Fig. 1. Results of same thres wracking filters applied to noise-dominated scene with two targets. Images comespond o thoss in
Fig. 10, except no white outline is used in image (b). Pesk in (b) at right edze, middle, is from noisy had pixel.

The trends in these two examples: namely,
improved signal-to-noise sensitivity of the NT filter,
and improved signal-to-cloud-clatter perfurmance of
the CT filter, are representative of the overall trends as
shown next,

B. Metric Plots

A commeon technique for evaluating the clutter
suppression capability of an algorithm is in terms of
signal-to-clutter (§/C) ratio zains expressed in dB
[12] and defined by

{‘SI l'llrc'--:ll:llﬂ

1a1 i -? §T e
Gain = 201og /), {3)

o}
o}

In earlier work [11], we introduced two new
performance metrics more relevant to temporally
processed real target data than the previous metrics
which were designed for spatially processed data
with embedded targets. Here, we use the second of
these proposed metrics, the antimedian metric (AM),
as it treats input and cutput symmetrically for both
signal and clutter and is objective in its application.
Essentially, the values required in the above equation
are obtained by using the antimedian filter as a
measure {not as a data filter) of the point target o
clatter strength for both input frames and filtered
ouiput. Our form of the antimedian filter takes the
gbsolute difference between the center pixel and the
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AM plotted versus (S/C);, . Our total database of
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Fig. 13. Cormesponding gains as in Fig, 12 for NT:ET plotted
versus target vejocities for our total database of noise-dominated
data sequences.

median of the 5 by 5 block about (and including) this
pixel. Using the AM, we can document the improved
performance of the new tracking filters identified

by the optimization process. This is described by

the following two figures which encompasses our
total target database, not just the subset used in the
optimization process. In Fig. 12, gains computed
from (3} for each target in the clutter-dominated
scenes for CT and ET are plotted as CT/ET gain
ratios versus (S/C);,. As the clutter conditions become
more severe, the superiority of the CT chosen from
the optimization becomes more marked. The overall
improvements are modest (typically a factor of 2 or
less), not unexpectedly as the CT filter is largely a
variation of the original ET choice (they differ mainly
by F,(44,10) for the CT versus F,(10, 10) for the
ET). More dramatic improvements are achieved in
noise-dominated scenes as shown in Fig. 13 where
relative NT/ET gains are plotted versus target velocity.
The superiority of the NT becomes very significant

at lower velocity, as expected from its longer period
filters. :

The results in Fig. 13 on noise-dominated scenes
reflect the relative signal-to-noise S/N gains of NT
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Fig. 14. Simulations of absolute S/N gains versus target
velocities of NT, CT, and ET (shown as lines) compared with
estimated 5/N gains for noise-dominated data sequences after

processing by the NT filter (closed circles) or by CT filter (open
circles).

versus ET for specific real targets. It is of interest
to simulate the abselute S/N gains of our filters.
In particular, we wish to identify the range of
velocities over which each filter is most effective.
We avoid the complexities of characterizing and
simulating real clutter and real targets by limiting
the simulation to idealized targets in white Gaussian
noise. Our set of idealized targets moves with
one of the following purely horizontal velocities:
0.02,0.03,0.05,0.1,0.25,0.5 p/f and are taken as one
pixel in extent. Simulated target temporal profiles are
triangular {ramp up and ramp down). One simulation
run consists of 50 identical embedded targets added
to 95 consecutive frames of computer-generated white
noise at a selected input S/N. A given TTF filter is
run and an equivalent output S/N is estimated from
receiver operating characteristic {(ROC) curves (curves
of probability of detection versus false alarm rates) of
typical output frames, using an estimation technique
described in [13]. The ratio of the equivalent ouiput
S/N to the selected input S/N generates an estimatéd
S/N gain for that velocity target. We have carried out
this simulation for the NT, CT, and ET filters with
results plotted as the lines in Fig. 14.

How well do our noise-dominated real target
data reflect the trends in these simulated gains? We
have computed rea} target S/N gains closer to the
spirit of the simuiation technique than is the AM, as
follows. Since the simulations use equivalent output
S/N values obtained from ROC curves which reflect
noise at the distribution tail, we use maximum noise
estimates for input and output in computing gains
from (3}. For the input, the temporal noise standard
deviation of a single frame estimated from standard
statistical methods was scaled by five to estimate N__, .
The values obtained were consistent with previously
reported camera characterization values [9). It is
difficult and somewhat arbitrary to determine the
strength of a real target as it moves through sampled
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imagery. As our measure of the input signal, we used
the maximum change on a target-influenced pixel
considering all the pixels traversed by the target

over the 95 frames of a given data set. These two
estimates provided (S/N);, . We took (S/N),,, as the
largest target-to-noise pixel ratio found in any of the
last 40 TTF filtered frames. Gains computed from
these estimates for the NT and CT filters are plotted
versus velocity for all our noise-dominated data scenes
{shown as points in Fig. 14).

Within the considerable scatter found for the real
data points, the broad features are nicely reproduced
by the simulation predictions. These include the
steep drop in sensitivity at the slowest velocites of
the NT and the crossover of the NTs and CTs at
about 0.25 p/f hinted at by the real (sparse) data.
Many data points do have larger gains than predicted
by the simulation, This could reflect the crude
correspondence in temporal profiles between real
and embedded targets. Each target has characteristic
nuances making it different from a simulated
counterpart. At the lowest velocities, in particular, the
temporal profiles of real targets often have segments
which mimic the profiles of faster targets. The
simulation only was done for the empirical tracker ET
to point out its poorer S/N gain sensitivity compared
with the improved filters. In sumimary, the NT is most
sensitive between 0.03-0.25 p/f, while the CT is most
sensitive between 0.1-0.5 p/f. The useful velocity
range of both filters is broader for targets in clutter
provided the targets have sufficient signal-to-noise.

VI, CONCLUSIONS

In this paper, we have reviewed the input
parameters of an easily implemented algorithm,
the TTF, for detecting and tracking point targets in
consecutive frames of IR image data from staring
cameras. After application of the Simplex algorithm
using real world data with targets of opportunity, we
analyzed the correlations among the filter parameters
which emerged from the optimization process. The
correlations indicated that the vatue chosen for the
first parameter (the period of the first of the three
filters) constrains the other five parameters to narrow
ranges. Examination of further correlations between
this first parameter and clutter severity and target
velocity, in conjunction with simulations of idealized
filter responses to embedded targets, led us to the
following conclusion. For scenes dominated by cloud
clutter leakage, the first parameter choice correlates
closely with cluiter severity—shorter periods for
more severe clutter. For scenes where temporal noise
is the dominant nontarget leakage, a correlation of
first parameter choice with target velocity becomes
noticeable—shorter periods with faster targets.

The correlation plots served as a guide in
choosing two new TTF filters: one dedicated to

cloud-clutter-dominated scenes and the other to
temporal-noise-dominated ones. We demonsirated
the §/C improvement of the new cloud tracker and
the S/N improvement of the new noise tracker as
compared with the original baseline empirical tracker,
We are currently running the two new forms of the
TTF tracking algorithm in real time on a laboratory
camera with impressive performance. In choosing
the new parameters, we were very conservative.
Suggestions have been made to extrapolate values of
the parameters rather than choosing values from the
clusters. This could further extend the S/N capability
of the noise tracker which is already challenging the
perception capability of human observers of the “live”
IR imagery.

Further topics to be investigated with these
filters include: spatial post-processing to enhance
S/N sensitivity; and, ground and sea-glint clutter
suppression. We plan to extend our data base to
include more challenging cloud scenarios at night. In
addition, work with a cooperative target is planned;
this will remove some of the questions that arise when
using targets of opportunity. Finally, the performance
of the TTF algorithm on a moving platform needs to
be investigated.
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