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Abstract

We present a technique for segmenting multi-dimensional data cubes based on multi-dimensional histograms. The

histograms are formed from single gray-scale image reductions of the data cube such as principal component images. A

segmentation is effected by associating each pixel with one of the peaks in the histogram. No spatial constraints are

imposed and no training pixels are required. The following refinements to this simple process are described: proper

weighting of the different principal components as a function of the peak shape; and automatic methods based on an

entropy measure to generate a reasonable segmentation at a specified number of levels. Examples from both visible and

infrared hyperspectral data will be shown.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Segmentation of a multi-dimensional data cube

to a digitized single image is useful in several ways
such as: operator display, as a preliminary classi-

fication of the scene, or as the first step in an object

cueing application [1]. We describe here a simple

technique for segmenting imagery from data cubes

such as multi-spectral or hyperspectral imagery; no

training pixels are required and the only operator
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intervention is to specify the number of desired

segmentation levels.

Single gray-scale images have been segmented

in several ways. One approach is to isolate edge
points from interior points in the image on the

basis of strong gradients in the brightness values.

Connecting the edge pixels will then determine the

image segments [2]. A second approach is to seg-

ment images by grouping together contiguous

pixels with similar brightness [3]. If we relax the

demand for physical connectivity between pixels of

the same segment, we arrive at a third approach,
histogram-based segmentation [4]: the image is

segmented through an analysis of the peaks and

valleys present in the histogram of the image. In

the context of scene or material classification, the
ed.
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third approach is the most useful as disjoint re-

gions may physically represent the same material

and should be assigned the same segmentation

level.

In this paper, we present a novel way to extend

histogram segmentation to multi-dimensional
images. We first compress the multi-dimensional

information (typically spectral profiles) into single

image reductions of the data cube such as principal

component images. A multi-dimensional histo-

gram is then constructed; an analysis of the sta-

tistical distribution of the points allows us to

segment the image based on the histogram ex-

trema.
The paper is organized as follows: Section 2

details the basic segmentation method and gives

examples in the VNIR, MWIR and SWIR; Section

3 describes the Gaussian model used to charac-

terize the histogram peaks; Section 4 refines the

mapping into integer bins required to generate the

histograms; Section 5 presents discussion, conclu-

sions and future directions.
2. Histogram-based segmentation

Classification, which is based on spectral clus-

tering, and segmentation of multi-dimensional

data are closely linked because of the spectral/

spatial correlations of natural scenes. As men-
tioned above, one standard technique in segmen-

tation from a single gray-scale image is through

the extrema of the image histograms. The present

segmentation method combines and extends these

concepts by forming multi-dimensional histograms

from ‘‘divergence images’’.

By divergence images, we refer to single gray-

scale image reductions of a data cube where the
closer the spectral similarity of two pixels, the

closer will be their final gray-scale value. We have

explored three types of divergence images:

1. By forming an image from the values of some

spectral distance measure of every pixel from

a chosen characteristic pixel. Various diver-

gence images are generated depending on the
choice of the characteristic pixel and the spec-

tral distance measure.
2. By forming an image of the spectral distance

measure of each pixel from a chosen eigen-

chroma from principal component (PC) analy-

sis [5].

3. By using the principal component images (ei-
genimages) from the PC analysis as the diver-

gence images.

For the present paper, we will use only divergence

images of type 3 since this involves no user choice

of distance measure and generates good segmen-

tations. We describe the segmentation technique

by a 2D histogram example, easily extended to
additional dimensions. Our example is from a

ground-based image of a tent taken with a VNIR

chromotomographic hyperspectral imaging sensor

(CTHIS) [6]. The VNIR CTHIS is a staring-mode,

framing camera system, which encodes both spa-

tial and spectral information on every frame of

data. Data cubes (256 · 256 · 74 bands) are com-

puted using an approach similar to the limited-
angle tomography techniques used in medicine.

Fig. 1(a) and (b) shows the first two PC eigen-

images. By mapping or scaling the floating point

PC values into integer bins (discussed in more

detail later), we form a 2D histogram from the

dual values of each pixel in the two components

(Fig. 1(c)). We next locate peaks in this histogram,

taken as maxima of at least value ‘‘2’’ in a 3 by 3
neighborhood (Fig. 1(d)); peaks are then weeded

to remove duplicates within two pixels of each

other (result not shown). These N weeded maxima

are lexigraphically labeled from 1 to N . The his-

togram space is then divided into N regions (Fig.

1(e)) by computing the closest peak to each point

in the histogram space using a Euclidean measure

and labeling that point with the digital label of the
closest peak. Based on such an N -region template,

each pixel in the data cube is then assigned the

digital label of its corresponding point in the 2D

histogram/template and segmentation to N levels

results (Fig. 1(f)).

The next figure shows a similarly obtained

segmentation of an MWIR image taken with an-

other locally-designed chromotomographic imag-
ing spectrometer [7]. The optical implementation is

basically the same for all of the various CTHIS

systems. The CTHIS projections are obtained by



Fig. 1. (a) First principal component eigenimage of visible data

cube, (b) second principal eigenimage, (c) two-dimensional

histogram: brightness indicates number of pixels contribut-

ing, (d) peaks of two-dimensional histogram, (e) template and

(f) 14-level segmented image.

Fig. 2. (a) First principal eigenimage of MWIR hyperspectral

image, (b) second principal eigenimage of MWIR hyperspec-

tral image, (c) nine level segmentation of MWIR hyperspectral

image and (d) 14 level segmentation of MWIR hyperspectral

image.
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imaging while the direct view prism is rotated on

the optical axis of the telescope. The projections

are then used to reconstruct a 256 · 256 · 74 band

hyperspectral data cube. Fig. 2(a) and (b) are the

first two eigenimages, while Fig. 2(c) and (d) shows

segmentations to 9 and 14 levels. Note that the

number of final segmentation levels tends to in-

crease, up to a point, with the number of chosen
integer bins so that gradations from coarse to finer

segmentations result (see Section 5). In our soft-

ware implementations, the user specifies a desired

number of segmentation levels and the starting

number of integer bins (scaling factor) is adjusted

downward until this desired number (or slightly

less) is achieved.
Fig. 3 is an example in the SWIR for a HY-

DICE image [8]. Here we formed a 3D histogram
from three eigenimages and extending the 2D

technique in a straightforward fashion, we

generated the 13 level segmentation shown in

Fig. 3.

The examples in Figs. 2 and 3 incorporate some

recent refinements to the simple technique de-

scribed above [9] which address two issues. First,

the nearest peak as measured by Euclidean dis-
tance used in forming the template (Fig. 1e) in

effect weights each peak and each component

equally. We shall deviate from this measure by

means of a Gaussian model. Secondly, our float-

to-integer mapping before histogram generation

has been done by linear scaling. We have switched

to well-developed techniques of histogram-based

nonlinear mappings rather than linear scaling,
with the final segmentations guided by an entropy

measure.



Fig. 3. (a) First principal eigenimage of HYDICE hyperspectral image, (b) third principal eigenimage of HYDICE hyperspectral

image, (c) fourth principal eigenimage of HYDICE hyperspectral image and (d) 13 level segmentation of HYDICE hyperspectral

image from three-dimensional histogram.
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3. Gaussian model

When we model the histogram peaks by a

Gaussian approximation, we take the peak height

as the co-efficient and the peak position as the

Gaussian mean. The less obvious choice is what to

use for peak width or standard deviation. We use

the co-histogram [10] of each component inde-
pendently (in its integer mapped form) to estimate

variance. The co-histogram, which is one type of
co-occurrence matrix, is a histogram plot of the
association of the gray level of a central pixel with

the gray levels of its 3 by 3 neighbors. For exam-

ple, a value of 20 at co-ordinate (40, 45) reflects 20

occurrences of a pixel of value 40 with a neighbor

of 45 in the component image. Note that the point

(45, 40) must also have a value of 20, which leads

to mirror symmetry along the diagonal.

Fig. 4 shows the co-histograms of the two ei-
genimages in Fig. 1. The variance computed from



Fig. 4. (a) Co-histogram of the first principal eigenimage of Fig. 1 image and (b) co-histogram of the second principal eigenimage.
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the values along (either) the vertical or horizontal

line, with the diagonal value taken as the mean, is

used to estimate the natural width in each com-
ponent dimension of that peak. For the 2D case,

we assume a simple Gaussian with no correlations

between the component images and no cross terms

for each peak.

P ¼ A exp½�ðx1 � m1Þ2=2r2
1� exp½�ðx2 � m2Þ2=2r2

2�
ð1Þ

P is a measure of the influence of the peak at gen-

eral location in the histogram x1, x2. A is the peak

height of the 2D histogram located at position

(m1;m2) in the 2D histogram; the variances r2
1 and

r2
2 are independently evaluated from the compo-

nent co-histograms. For example, for a peak at (40,

30) in the 2D histogram, one computes the r2
1

variance from the horizontal (or equivalently ver-

tical) line of value equal to 40 in the first co-

histogram and likewise for the r2
2 variance at value

equal to 30 in the second co-histogram.

Instead of the minimum distance criterion, we

can now assign a pixel with values x1, x2 to a peak

of maximum estimated probability at that loca-

tion, i.e. the peak that yields a minimum value to
the expression:

ðx1 � m1Þ2

r2
1

þ ðx2 � m2Þ2

r2
2

� 2 lnA ð2Þ
Peaks (distributions) with large maximum (A in

Eq. (2)) and/or large variance extend their influ-

ence to greater distances. Keep in mind that Eq.
(2) also governs the relative influence of two

components (which share the same value of A)
through the r2

1 and r2
2 terms. This is shown clearly

in Fig. 5 in which we segment the tent image on the

basis of the first and seventh eigenimage: the latter

component and its co-histogram is shown in Fig.

5(a) and (b). In Fig. 5(c) and (d), we compare the

segmentation based on Euclidean distance and one
using expression 2, respectively. Since the vari-

ances associated with the second histogram com-

ponent are greater than those of the first, in the

second segmentation, the influence of the seventh

(noisy) eigenimage is down-weighted (in the sense

of less constraints on the second component co-

ordinate in regard to its peak association) leading

to a very evident improvement Fig. 5(d). Less
dramatic but still significant improvements in

segmentation quality occur in switching to our

Gaussian model even with two or three high

quality PC(s) used to form the histogram.
4. Entropy-guided mappings

We next discuss the second major refinement to

the initial segmentation procedure, which ad-

dresses how to map the floating-point PC data into



Fig. 5. (a) Seventh principal eigenimage, (b) co-histogram of seventh principal eigenimage, (c) segmentation from first and seventh

components based on Euclidean distance model and (d) segmentation based on Gaussian model using co-histograms to estimate

parameters.
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the integer bins needed to generate the histograms.

This issue is especially important when a small

number of segmentation levels is desired, say less

than 15, and the image consists largely of low

spatial frequency background, but with occasional

high spatial frequency areas at levels removed

from the background. The MWIR hyperspectral
image of Fig. 2, where the building is such a high

spatial frequency region, will serve as an example

to explore this issue.

In our initial formulation of the histogram

segmentation technique [9], we used linear scaling

and iterated the specified range of integer bins
until the user-desired number of segmentation

levels was achieved. The only other user choice

was to fix the minimum number of pixels at a

maximum histogram location accepted as a peak

(default ‘‘2’’ used initially). We observed that

increasing this value would have striking effects on

the consequent segmentation (see for example Fig.
4(c) and (d) in [9]). However, choosing the peak

definition that gives the most pleasing segmenta-

tion is both subjective and empirical and we prefer

the alternative scaling technique outlined next.

Based on past research on the display of infra-

red imagery [11], which treats mapping from high
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dynamic range histograms (the ‘‘raw’’ histogram)

to 8-bit histograms (the display histogram), we

introduced a nonlinear mapping, histogram pro-

jection (HP), which treats each occupied level of

the raw histogram equally. This was in contrast to

the standard technique of histogram equalization
(HE) which allots integer range in the display

histogram in proportion to histogram height in the

raw histogram. The HE mapping tends to lump

high frequency spatial regions at sparsely occupied

levels into a few display levels. We further intro-

duced a more generalized mapping, plateau

equalization (PE), in which by introducing a pla-

teau or saturation level into the raw histogram
computation, one generates mappings which are

intermediate between those of HP (plateau¼ 1)

and those of HE (plateau above the maximum

value in the raw histogram).

We have adopted the plateau mapping tech-

nique for the present scaling problem as follows.

First we linearly scale the PC floating point values

into a large integer range (typically 0–1000) which
retains the basic statistics of the floating point

values. Then we employ PE to map from the

‘‘raw’’ histogram of 1000 to the much lower inte-

ger ranges needed to form the histograms used in

the segmentation techniques (ranges from 5 to 50

integer bins are typical for the 2D histograms.) To

automate the process of choosing the plateau level

that gives the ‘‘best’’ result at a user-specified
number of final segmentation levels, we employ an
Fig. 6. (a) Segmentation of Fig. 2 image to 12 levels scaling the da

mentation to 12 levels with histogram-based scaling of the data using
entropy measure. Our experience is that the first

eigenimage of a PC analysis generally provides a

high contrast view of the scene with reasonable

balance between high and low spatial frequency

regions. Assuming segmentation to N levels is

sought, we linearly scale the first eigenimage to N
levels in order to compute the baseline entropy of

this component by the expression:

E ¼
XN�1

0

�ðfi log 2ðfiÞÞ ð3Þ

where fi is the fraction of pixels at level i. We next

run our algorithm with the desired subset of PC(s)

over a range of plateau levels, typically 1, 5, 10, 15,

20, 25 and 30. At each plateau level, we generate

the histograms produced by the corresponding PE

mapping and iteratively change the final number

of integer bins downward until we obtain the

specified N level segmentation (or just below). The
entropy of the final segmentation is computed with

Eq. (3). After the segmentations associated with

each plateau level are generated with their associ-

ated entropy values, the preferred final result is

taken as that segmentation with entropy closest to

the baseline entropy of the first PC.

In Fig. 6(a) and (b), we show the results of this

technique for the plateau¼ 1 result (close to linear
scaling if the PC floats form a smooth continuum)

as compared to the plateau level result with the

best entropy match. In Fig. 6(b) with the plateau

level at 30, the entropy measure has guided us to a
ta linearly and without using the entropy metric and (b) seg-

the entropy metric.
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segmentation with clean differentiation among the

field stop, sky, building, trees, and ground, similar

to the first PC image. In contrast, in the linear-

scaled result of Fig. 6(a), the sky, trees and part of

the ground are combined into one segment.
5. Discussion

We have described a simple and robust tech-

nique for segmenting multi-dimensional data

cubes based on multi-dimensional histogram for-

mation. The histogram approach avoids any spa-
Fig. 7. (a) Segmentation to eight levels of visible data cube of Fig. 1, (

of two segmentations.
tial constraints and no training pixels are required.

The only user-specified parameter is the desired

number of segmentation levels leading to a series

of segmentations from fine to coarse. Such seg-

mentations are a form of unsupervised classifica-

tion based on pixel clustering. As such, our
technique is simpler with less user intervention

than computing techniques such as the K-means

method [12] or hierarchical descending methods

[13,14]. Clustering and compression are combined

in these histogram-based segmentations in that

spectrally similar pixels are reduced to two or three

similar values in the principal eigenimages with the
b) K-means segmentation to eight levels and (c) difference image
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peaks in the histogram locating the centers of such

groups. Given that the PC technique generates

components in order of their variance, we antici-

pate that the technique should be robust and noise

resistive.

In Fig. 7, we show two 8 level segmentations
using the present methods Fig. 7(a) and the widely

used K-means algorithm [12] (Fig. 7(b)). The K-
means algorithm is a classifier where the operator

specifies a initial seed set of K centers, i.e. the

profiles of K pixels, assigns each pixel to the

nearest center using some spectral distance mea-

sure, updates the centers by averaging over the

profiles of the assigned pixels, and iterates the
process. In producing our K-means result, we se-

lected eight pixels randomly from each segmenta-

tion level from the 7a segmentation as the initial

seeds and allowed 10 iterations using a Euclidian

measure. At a casual glance, the two segmenta-

tions are quite similar; however a difference image

(Fig. 7(c)) indicates that some 2000 pixels, 3% of

the total are indeed different. These are concen-
trated at boundary regions and in the foliage. One

anticipates that the K-means would provide more

accurate final classifications than the present his-

togram technique; the latter, however, could pro-

vide reasonable starting seeds for the former.

Huang [14] presents evidence that this choice af-

fects the final classification.

Several issues will be the focus of future work
in enhancing our segmentation methodology.

The first is the desire to automate or at least

constrain the user choice of number of clusters

or segmentation levels. We are exploring using

the data itself and the evolution with scaling

parameter of the histogram peaks to find stable

or preferred number(s) of clusters. A second

issue arises in the absence of ground truth:
namely, how to move beyond a subjective user

assessment of the quality of a segmentation and

formulate an objective merit function for com-

paring segmentations with similar numbers of

levels. Using locally obtained MWIR images

with ground truth, we plan to explore the several

issues mentioned: namely, extraction of data-

indicated number of clusters; a merit function to
evaluate segmentation quality; and robustness to

data quality.
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