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We present a new algorithm for image restoration in limited-angle chromotomography. The algorithm is a
generalization of the technique considered previously by the authors, based on a hybrid of a direct method of
inversion and the iterative method of projections onto convex sets. The generalization is achieved by intro-
ducing a new object domain constraint. This constraint takes advantage of hyperspectral data redundancy
and is realized by truncating the singular-value decomposition of the spatial—chromatic image matrix. As
previously, the transform domain constraint is defined in terms of nonzero singular values of the system trans-
fer function matrix, The new algorithm delivers high image fidelity, converges rapidly, and is easy to imple-
ment. Results of experiments an real data are included. © 1999 Optical Society of America
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1. INTRODUCTION

Chromotomography provides an estimate of image inten-
sity as a function of position and wavelength. The esti-
mate is based on evaluation of the two-dimensional to-
mographic projections of the three-dimensional object
related to the image through the x-ray transform.! The
abjective of chromotomaographic image restoration is to re-
cover the complete three-dimensional spatial-chromatic
scene from chromatically sampled two-dimensional pro-
jections.

The restoration is obstructed by the so-called limited-
angle problem, generic to many computed-tomography
applications, or by the fact that, as a result of certain
physical limitations of the measuring instrument, not
enough data can be collected.?® Effects of this can be
scen in the Fourier domain by appealing to the projection-
slice theorem.® The theorem states that the two-
dimensional Fourier transform of the tomographic projec-
tion is equal to the three-dimensional Fourier transform
of the image evaluated on a plane through the origin in a
direction perpendicular to the projection beam. If a com-
plete set of tomographic projections measured over a full
range of angles is not acquired (as is the case in applica-
tions such as synthetic aperture radar or medical comput-
erized tomography’}, then an angular region of a Fourier
transform of the image is not sampled.

A similar manifestation of the same phenomenon oc-
curs in chromotomography. Although a full range of pro-
Jections can in this case be obtained, since the projection
beam rotates at a fixed acute angle with the chromatic
axis, the projection plane sweeps out only part of the
three-dimensional space, and the union of Fourier trans-
forms of all tomographic projections contains only partial
information about the three-dimensional Fourier trans-
form of the object. This is reflected in a singularity of the
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system transfer function (STF) matrix, which relates the
tomographic projections with the object, thus obstructing
computation of the hyperspectral image by a direct
method of inversion. Use of the pseudoinverse ohtained
through singular-value decomposition (SVD) of the STF
matrix offers the minimum-norm least-squares solution;
this estimate, however, suffers from poor feature resolu-
tion and contains severe artifacts.

In an aiternative approach, which bypasses the compu-
tation of an inverse of a singular matrix, recovery of the
unknown object is achieved hy utilizing a priori informa-
tion about the image. Typically, an initial (often arbi-
trary) guess about the unknown object is made, which is
then subjected to a sequence of corrections, forcing it to
satisfy a number of desirable characteristics. This se-
quence of corrections is applied repetitively until conver-
gence occurs. An example of this approach is the
Gerchberg-Papoulis procedure,®? where knowledge of the
image spatial boundary and part of its Fourier transform
is used to recover the spectral image. The basis for this
technigue is that a spatially limited object has an analytic
Fourier transform and therefore in principle can be
uniquely determined from any finite interval of its spec-
trum. The Gerchberg-Papoulis procedure is an iterative
algorithm, which approaches the solution by alternating
between the ohject domain and the Fourier domain. The
known parts of the spectrum and the known boundary of
the image are imposed on the iterated solution as con-
straints,

The Gerchberg-Papoulis technique is generalized by
the method of projections onto convex sets (POCS}, which
altows other types of a priori knowledge about the object
ta be incorporated inte the algorithm. As a result, an in-
creased convergence rate and an improved performance
are achieved, at only a modest increase in the computa-
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tional cost for implementing the additional constraint op-
erators. As with the Gerchberg-Papoulis technique, the
discrete Fourier transform still remains the most expen-
sive part of the iteration. This advantageous
performancc/complexity trade-off is of particular impor-
tance in image processing applications, where data di-
mensionality prohibits  computationally complex ap-
proaches.

The main challenge of the POCS method is to identify
constrainl operators that can be easily implemented and
that lead to a rapid convergence. This is particularly im-
portant in the processing of high-dimensionality images,
such as hyperspectral data cubes, Traditional constraint
operators invelving nonnegativity, magnitude bounds, or
finite support yield slow convergence and unsatisfactory
performance, since hyperspectral image estimates do not
differ significanily from the image characteristics de-
manded by the constraints.*’

In this wark we propose a new object domain con-
straint. This constraint is based on the SVID technique,
which is used to determine the dominant structure of the
data and to construct reduced-dimensionality approxima-
tions by projecting the data onto a subspace that is con-
sistent with image spectral characteristica, Results of
cxperiments demonstrate that the new constraint yields
rapid convergence and leads to restoration of a significant
portion of the missing information. The algorithm alse
provides a reasonahle way of monitoring the progress of
the iteration by means of the singular-value spectrum.
The costly two-dimensional Fourier transform is trans-
ferred to the precomputational stage, and the computa-
tion required by the iteration is reduced to matrix-vector
multiplication. Since the new algorithm relies on data
redundancy, a characteristic of many applications, it is
anticipated that the SVD-POCS algorithm can be effec-
tively applied to other data restoration problems, such as
ectomography.!!

Although SVD has been known for approximately 100
years, recently there has been a revival of interest in this
technigue in the signal processing community. 12-14 oy
has been used in such diverse applications as data dimen-
sionality reduction'®; separation of signals of interest, or
signal from noise in medical applications'®; in radar,!? in
communications'®; and in classilication of end members
in hyperspectral data'™ 2! (to give just a few examples).
This renewed interest is largely due to the rapid advance
in ecomputing technology, amplified by the increasing so-
phistication of numerical algorithms, which has made cal-
culation of the SVD of medium-size matrices practical.
Since application of SVD to signal processing problems is
still in its infancy, many exciting new results are to be ex-
pected in the future. The new iterative technique pro-
posed in this paper relies on SVD}, using its various as-
pects at three different stages of the algorithm:
eomputation of an initial estimate of the unknown image
{robust matrix inversion), computation of the object do-
main constraint (subspace identification), and computa-
tion of the transform domain constraint {compaction of in-
formation).

The paper is organized as follows: we present an alge-
braic formulation of the reconstruction problem (Section
2}, review the POCS method (Section 3), introduce the
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new SVD-POCS algorithm i Section 4}, and report results
of experiments (Section 5).

2. PROBLEM

An Imaging spectrometer reconstructs a  three-
dimensional spatial-chromatic scene from a sequence of
two-dimensional images. The reconstruction can be ac-
complished in several ways, depending on whether multi-
plexing of information is performed in either the spatial
or the chromatic domain or jointly. Different multiplex-
ing schemes imply different trade-offs in terms of effi-
ciency. flexibility, and complexity of the spectrometer,®
but the numerical formulation of the reconstruction prob-
lem remains essentially the same.

In Ref. 22 Mooney has proposed a new computed-
tomagraphy image spectrometry technique {chromoto-
mography). In his approach the multiplexing is accom-
plished by a rotating prism (Fig. 1). As the prism
rotates, each chromatic slice of the object cube follows a
circular path, with the radius of the path delermined by
the prism dispersion. A sequence of spatial tormographic
projections g(X, &) iz thus obtained, each tomographic
projection being an integral of the three-dimensional
spatial-chromatic ohject cube fi%, A} in the chromatic
variable h:

gix, ¢) = J‘ T — kih Ag)P,, Ada, (1
where ¥ = (x,, X3}, 5, = {cosd,sin ), 0 = b << 27, Xy
is the center wavelength, and £ is a spectrometer constant
determined by the sensor focal length and prism disper-
gion (Fig. 2% This can be recognized as a three-
dimensional x-ray transform of /' (Fig. 3). Taking the
two-dimensional Fourier transform of Eg. (1) in the spa-
tial variable ¥, we have

glé, o) = j expl —2 w7k, E3A — Ay [HE Midh,
(2}
where i€, M) and g(Z, ¢} are the two-dimensional Fou-
rier transforms of /{x, A} and g(X, &), respectively, in
and & = (&, &) is the frequency variable. For a fixed ¢,

the right-hand side of Eqg. (2) can be recognized as the
one-dimensional Fourier transform of f in the chromatic

|
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Fig. 1. Schematic representation of the chromotomographic im-
ager. The dircet vision prism is shown spreading red, green,
and hlue light across the [ocal-plane array (FPA).
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Fig. 2. Chromotomographic projections of the hyperspectral data cube of Hanscom Air Foree Base, Mass., registered by FPA for prism
rotation angles ¢ = 0, w3, 23, =, 4w, and 573, The projections are ordered from middle left, clockwise. The center image corre-
sponds to the sum of all monochromatic slices, as seen hy the spectrometer.

variable & evaluated on a plane {(£, {}: {, = (kP ., &)}
through the origin of the three-dimensional frequency
space™®:

g(E, £,) = FHE A — Ay} (3

The union of all chromatic Fourier transforms (3) for 0
= ¢< 2w is an exterior of the come {(£ {): |{]
= |(kP g, E})|, 0 = & < 27} in the three-dimensional Fou-
rier space (Fig. 4).

The objective of chromotomography is to find the object
f, given the measurements g. Since part of the three-
dimensional spectrum of g is unknown, there iz insuffi-
cient information to recover f directly. This phenomenon
is known in tomographic image restoration as the limited-
angle problem. It is often interpreted in the context of
the projection-slice theorem, which states that the two-
dimensional Fourier transform of each line integral pro-
jection i a plane through the three-dimensional Fourier
transform of the object. If the axis of rotation of the
prism were perpendicular o the projection direction, the
plane in the Fourier space would rotate around a line con-
tained in the plane, sweeping the whole space. Howewver,
since the axis of rotation forms an acute angle, say «, with
the projection direction, the plane rotates about a line not
contained in the plane, ignoring a region of a double cone
of an angle 72 - o (Fig. 3).

Consider a version of Eq. (2), sampled at discrete chro-
matic bands and discrete angles™:
M-I
€8 = 2 exp[ 2P, Bin — ng) I(B), (4)

Aa—u

where 5. = (cos(2mm/M), sin(2om/M)), 0=m < M,
M=N,n=kx and n, = kA,; 8o
I- & [ &5 ]
| (&) fi(Z)
= A(&)] (5)
Eu_1(E) L fy_1(8) ]

where the A(£) is an M % N matrix with elements

Ap (8) = exp[ —27i{fm,El(n — ng)]. (6)
For hr':—e'.rit}' we write EL‘E_ (H) as
g = Af (7)

The existence and the uniqueness of the solution of Eqg.
(7) depend on the rank of A, which is equal to the number
of independent rows of A. Tt is clear from Eq. (6) that A
is ill conditioned for many values of . A convenient tool
for evaluating the rank of a matrix is SVD. The SVD of a
matrix A is defined as®
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A= UVH (8

where U and V are M = N and N ® N matrices, respec-
tively, such that

Uiy =vWi=-¥viv=1,

the superseript H indicates Hermitian adjoint, and X is
an N ¥ N diagonal matrix of singular values,
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Fig. 3. Geometry of chromotomographic data colleclion and its
relation to the x-ray transform.

Fig. 4. Two-dimensional Fourier transform planes correspond-
ing to the six chromotomographic projections shown in Fig. 2.
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}-l- = diag["'ﬂ, r.l'l,..., u-.'ﬂ.'—':L

guch that oy = oy = - = oy, = 0. If A is nonsingu-
lar, i.e., oy = @y = -~ = oy_; = 0, then a matrix inverse
to A can be computed as

Al= vzt
where elements of ¥ 1 are found by inverting elements of
e 2
31 = diag(ogt, o7ls.... ont1)

If A™' can be computed, Eq. (7) has a unique zolution
given by

ST e
If A is singular, ie., there is K <= N such that oy
R e 1-:‘1’J'H_"'= N 1—4}_.501,]’19'5
X = Ey = diag(og,..-. TE-1 | R | )8 (9)

then a direct inverse A ! cannot be obtained and Eq. (7}
cannot be solved uniguely. Alternatively, the Moore-
Penrose inverse (a pseudoinverse) A™ (Ref. 25) can be
used to find a minimum-length least-squares solution of
Eq. (7). The pseudoinverse of a matrix A is defined as

At = VI'UH, (10)
where the disgonal matrix X' is formed by replacing non-
zero elements of X with the reciprocal values

3* = diag(og',..., og . 0,..., 0) (11)

Multiplying both sides of Eq. (7) by A” yields the pseudo-
solution

f'=A'g (12)

In practice, the recorded data g are contaminated by
nolse, Le.,

g=Af+n (13)

In effect, small nonzero singular values of A result in in-
stabilities. This can be seen by considering
Atg = A'Af+ A*n = VE'(EVIf + U'n).

If elements of ¥ are close to zero, then elements of X' be-
come very large and the filtered noise dominates restora-
tion. To balance the loss of spectral resolution and the
noise amplification that is due to small singular values, a
modified version of Eq. (11) can be uzed, where small sin-
gular values cloge to the noise variance are set to zero.
Alternatively, a regularization technigque can be applied,
which allows for gradual transition of singular values to
zero. ™

The direct method of inversion, as implemented by Eq.
(12), provides a reasonable estimate of the hyperspectral
image; it does not, however, uniquely reconstruct the
three-dimensional scene. This can lead to artifacts, par-
ticularly in scemes with significant content in the
low-spatial-frequency/high-chromatic-frequency  regime,
which coincides with the null space of A.  To improve fi-
delity of the hyperspectral image, one needs to recover the
null-space information. Clearly, this cannot be accom-
plished by using the direct method, and other approaches
need to be tried. One such approach involves using
a priori information about the scene, such as finite extent,
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finite intengity range, energy bounds, etc., in the form of
solution constraints. If the pseudosclution resulting
from the direct method does not meet these constraints,
repetitive application of a sequence of constraints to the
estimate leads to recovery of the null-space information
and to reduction of artifacts.

This idea is formalized by an image restoration tech-
nique known as the method of projections onto convex
sets (POCS). Its formalism guides selection of eligible
image property sets and specifies conditions for conver-
gence of the iteration.

3. PROJECTIONS ONTO CONVEX SETS

The POCS method was introduced by Bregman?®’ and Gu-
bin ef al.?® and popularized by Youla and Webb,2® Levi
and Stark,*** and Sezan and Stark,*? who also applied it
to image restoration. A detailed overview of POCS is the
paper by Combettes.?

The methed of POCS is an iterative algorithm for find-
ing an image f’ in the intersection of a given sequence of
R closed convex sets:

A subset C of H, where ¥ is a Hilbert space, is convex if
for any two of its elements f; and f, it contains the ele-
ment f = uf; + (1 ~ w)fy, where 0 = u = 1 (Fig. 5). A
subset C of H is closed if the limit element of any sequence
of elements in C is contained in C. Associated with each
closed (not. necessarily convex) set (. is a projection opera-
tor P,: H — C,, such that

If = P.f|| = min{f — &

so the nearest element to fin C, is P,f. If {, is convex,
then P,f is unique. Given (in general, nonlinear) projec-
tion operators P, associated with closed convex sets C, , a
sequence of images { f*} is generated by the recursive re-
lation

over all & e (.,

AL = PPy P fE. (14)

The sequence {f,} converges to f in (; {Fig. 8); i.e., for
every f € H,

E_m(f’“:f) ={f.r

Relation (14) can be stated more generally:
fE = TpTay - Ty fH, (18)

where T, =T+ A{P, — I}, 0 <A, <2, and I iz the
identity operator. The A,/s are relaxation parameters
and can be used to accelerate the rate of convergence of
the algorithm.

Typical convex sets include sets of images restricted by
spatial extent (optical field stop) (Cg;), the known part of
the spectrum ({yp), band limitedness (Cg;), the known
part of the image (C;p), nennegativity, amplitude bound
(intensity range), 12 energy, etc. In the special case when
only the two sets (;» and Cg; are used, the POCS iteration
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CA Cg

Fig. 5. The set C, is convex, and the set Cg is not convex. A
convex set must contain every line segment with end points in
the set.

Fig. 6. POCS algorithm utilizing two convex sets C and Cg. A
sequence of images f% Fl=PgP.f° f2=PgPs....,
f* = PgP,f* ! converges to an element /* in Cy N Cg.

reduces to its famous special case, the Gerchberg—
Papoulis algorithm for signal extrapolation. When only
Cgy, and Cgp are used, the POCS iteration takes the dual
form of the Gerchberg-Papoulis iteration, i.e., that of
spectral extrapolation.

4. ALGORITHM

The Gerchberg-Papoulis algorithm for spectral extrapo-
lation is an example of the POCS method utilizing two
constraint sets: the set of images with a known part of
its Fourier transform and the set of compactly supported
images. Many other algorithms utilizing different con-
straint sets can be formulated by using the framework of
POCS, depending on the side information available.
This freedom to match an algorithm to an application is
indeed one of the greatest advantages of a signal process-
ing approach based on POCS. However, finding useful
convex property sets also poses a challenge. The con-
straints need o describe physical properties of objects
with a high degree of accuracy, At least some of these
properties should not be shared by the initial estimate.
The constraints have to be computationally efficient. Fi-
nally, convergence has to be reached in a small number of
iterations. The role of the algorithm designer is to iden-
tify and implement signal property sets that best fulfill
these requirements. Traditional property sets, such as
finite spatial extent, amplitude bounds, positivity, or
spectral limits, usually yield slow convergence, partly be-
cause the image properties associated with these sets of-
ten do not differ significantly from properties of the image
estimate. In this paper we introduce a POCS algorithm,
based on two new constraint sets, that delivers promising
results.

The first constraint set is determined by the data col-
lection system, which can be modeled by means of Eq. (7)
or (13). In either case the SVD of A naturally leads to
partition of the image into two components:
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b= Sty (16)

The pseudoinverse £ is the known component of the im-
age Lo be recovered, corresponding to the nonzero singular
values of A. fy ig the unknown image component, corre-
sponding to the null space of A, We will use decomposi-
tion (16) to form a constraint set of images with a known
pari equal to £ Since, as will be seen in Subsection 4.4,
the decomposition takes place in a space spanned by right
singular vectors of the STF A, we will call this constraint
a transform domain constraint.

The second, object domain constiraint set is determined
directly by the hyperspectral data. It is well known that
hyperspectral images are highly redundant in both the
spatial and chromatic variables. The redundant infor-
mation can be compacted by applying SVD to the data or-
ganized in a matrix form. The compacted information
can he extracied from the dats matrix and applied as an
estimate for the unknown image component ;. Since
SVD is the optimal transformation for information redun-
dancy reduction, the constraint leads to an efficient and
rapidly converging algorithm.

The following subsections describe both constraint sets
in detail.

A. Transtorm Domain Constraint

As il was seen in Section 2, singularity of the 3TF matrix
A leads to parameterization of the solution space by the
null space of A. Use of the pseudoinverse A" yields a
unigue solution by discarding the null-space component.
Since the pseudvinverse identifies the known data, it can
be used to form a constraint set. This constraint set is
similar to the =et of images with a known speciral part,
Cgp, utilized in the Gerchberg—Papoulis iteration. In-
deed, we can write an iteration of the form

i+ = P+ DaPi*, (17

where P, = A"A and Py, = I — A"A are the range and
null-space projection operators of A, respectively, and P
is a projection operator associated with the ohject domain
constraint. In short, Eq. (17) can be written as

£5'1 = £ + P,PE (18)
paplgk (19)

where PYE") = £ + Puif') is a projection of £ = Pt
onto (y, a set of signals with a known component f

= P,f. The known parl f” is used in the ileration as
the initial estimate £7. The unknown component f* is it-
eratively refined by alternatively applying projectors Pr
and P,. Since

A'A = VELE N = VI VH (20)
where X is defined by Eq. (9) and Ig is a rank K identify
matrix, the iteration (17) can be written as

£4'1 = VIgVEf+ (I — VI,VPIE:. (21)

Equation (21} allows us to interpret the constraint pro-
jector PA as a linear filtering operator in a transform
space defined by the V matrix. To see that, premultiply
Eq. (T) by £7U", 0 that
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¥V = T, VHE, (29

and sety = ' UHgand x = V' Equation (7) can now
be expressed as a simple fillering operation:

y = Iyx. (23)

The unitary matrix V! forms a set of orthogonal vee-
tors, similar to the sinnscidal Fourier basis functions.
Multiplication of f by V! unitarily transforms the vector £
into a new vector x = V. Premultiplication of x by a
rank K identity matrix I in Eq. (23) can therefore be
viewed as projecting f onto a K-dimensional space in the
V-transform domain, and the pseudoinverse

£t = Vy= VI Vit (24)
can be viewed as a V-domain low-pass filtered version of £

To simplify the discussion in thiz section, we have con-
sidered the noise-free data collection model (7). The
more realistic data+noise model (13) does not affect the
derivation or the interpretation of the V-transform con-
gtraint in a significant way. Computation of the pseudo-
inverse, as mentioned in Section 2, has to be modified by
setting small singular values to zero to filier out signal
components excessively contaminated by noise. Transi
tion from the noise-free model (7) to the data+noise
model (13) and modification of the pseudoinverse have
two important consequences.  Firsl, discarding small sin-
gular values decreases the rank of A, Second, the tran-
sition from model (7) to model (13) implies that the
pseudosolution f ', depending on the choice of K, will be
affected by noise. The iterative algorithm will not at-
tempt to reduce degradation of £7, onee K is selected.

B. Ohject Domain Constraint

It is possible in principle for every spatially resolved pixel
to possess a unique chromatic signature. In practice,
however, large regions of hyperspectral scenes, such as
mixed forests or crop fields, have similar chromatic pro-
files. Figure 7, which shows a three-dimensional render-
ing of a hyperspeciral data cube of Moffett Field, Calif.,
measured with the airborne wvisiblefinfrared imaging
spectrometer instrument, demonstrates this case. The

Fig. 7. Hyperspectral image of Moffett Field, Calill, taken with
the AVIRIS instrument (courtesy of the Jet Propulzsion Labora
torv, Pasadena, Calill).
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strong axial alignment of the image features in the verti-
cal faceg of the data cube indicates a high degree of cor-
relation (or information redundancy) among the chro-
matic slices. The existence of a significant degree of
correlation in hyperspectral images has been form erly re-
cognized and used to identify chromatic end mem-
bers, perform c¢hromatic unmixing, and compress
information.'® 2 Here we propose to take advantage
of redundancy to construct the object domain constraint,
which is the cornerstone of our iterative algorithm for res-
toration of chromotomographic data.

Since data are redundant, part of the Fourier trans-
form can uniguely represent the hyperspectral image. In
chromotomagraphy the conical shape of the missing data
region implies that some information exists for all spatial
frequencies and that some information exists for all chro-
matic frequencies. Using the redundancy present in
known parts of all horizontal planes (spatial information)
and vertical lines (chromatic information) throughout the
three-dimensional Fourier cube, we can form an estimate
of the unknown image part by foreing the missing data
values to be consistent with the known region of the im-
age.

The redundancy of a hyperspectral image can bhe as-
sessed by computing the SVD of the image organized as a
two-dimensional spatial-chromatic matrix, Consider a
zero-mean data matrix

F=ifs—forFi o fronfv 1 — v D (25]
formed by taking as its rows
f}i = f‘n(x’ =X + Xlxg:la
0= x <Xy, 0 =xy; <Xy, {26)

the lexicographically ordered monochromatic slices f, of
the object cube estimate, where X; and X, are the hyper-

spectral image spatial dimensions and /[y, f,, and fy_;

are the mean values of vectors f,,, /1, and fy ..  Appli-
cation of SVD to F, ie.,
N1
F=UV'= Y om0, (27)

w=A0

produces a new set of triples of singular values r, , spa-
tial right singular vectors ©, (eigenimages), and chro-
matic left singular vectors &, (eigenchroma), forming the
weighted outer product sum of Eq. {27) (to distinguish the
SVD of the data matrix F from the SVD of the system STF
matrix A, we use italic letters U/, T, and V for the former
and boldface letters U, X, and V for the latter). The
etgenimages and the eigenchroma are ordered in terms of
decreasing singular values or, equivalently, decreasing
information.

Usually, a few singular values of the SVD dominate the
singular-value spectrum (Fig. 8). These singular values
correspond to outer products having the richest informa-
tion content. Since the outer products associated with
the lower-order singular values represent noise and arti-
facts, an image can be fully represented by the dominant
few outer producls:  Specifving o prior? the number of
outer producls that represent a hyperspectral image is
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similar in spirit to constraining a two-dimensional image
spatially, as in the Gerchberg-Papoulis procedure. The
main factor that differentiates the SVD-POCS algorithm
object domain constraint from the Gerchberg-Papoulis al-
gorithm finile-spatial-extent constraint is that, in the
former, information is constrained in an indirect way by
selection of the image feature subspace spanned by the
dominant singular vectors of the data matrix, whereas in
the latter the constraint is realized by selection of the im-
age valid spalial indexes. An approach based on the
former constraint is both efficient and intuitively pleas-
ing, since selection of the outer products has an immedi-
ate and profound effect on the data and affects the entire
information content of the spatial-chromatic image
rather than a single aspect of it, spatial boundaries,
whose importance is often uncertain.

Define projector P/ = UI,UT, where U is the
eigenchroma matrix of the pseudoinverse ¥ = F? [as in
Eq. (27)], I is a rank L identity matrix, and L is the con-
strained number of eigenimage—eigenchroma pairs of F.
The image in Eq. (27} can then be decomposed as

F=F, +F;, (281
where
F; = PIF. (29)

Fy, is a projection of F' onto the feature space U, , repre-
sents the compacted image information, and is used as an
estimate for the missing part of the spatial-chromatic
data. F; = F ~ F is the orthogonal complement of ¥, ,
which is a projection of F onto the noise space U — U, ,
represents noise and artifacts, and is discarded.

Optimal selection of the feature space dimension L is of
great importance, since it bears on fidelity of the restora-
tion and convergence speed of the algorithm. The prob-
lem of estimating an optimal model dimension is encoun-
tered in many applications, particularly in detection and
communications. One of the earliest attempts to solve it
can be found in Shannon,* who tried to establish a math-
ematical connection between the complexity of the source
and its distortion. In principle, the problem can be re-
duced to estimating a low-rank approximation to the data
matrix eorrupted by noise. If noise variance is known,
the feature space dimension that optimally trades model
distortion for noise reduction can be expressed in terms of
gsignal-to-noise ratio.® In practice, however, noise vari-
ance can be difficult to obtain. Moreover, in data resto-
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Fig. 8. Singular-value spectrum of Jasper Ridge, Calif,
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ration, the model includes artifacts, as well as signal and
noige, Ideally, the SVD would separate signal and arti-
facts (or signal and interference). However, this is rarely
the case; singular vectors usually contain information re-
lated to all three components of the model.

A more favorable situation occurs when signail-to-
artifact ratio (and signal-to-noise ratio) is sufficiently
high; in effect, the dominant singular vectors contain
mostly signal information. One intuitive approach is
then to identify an abrupt change in the singular-value
spectrum and use it as a demareation peint for subspace
decomposition. A still better strategy for an iterative al-
gorithm is to start with a more economical approximation
of the feature space and then gradually increase its di-
mension as iteration progresses and signal-to-artifact ra-
tio increases. Such a strategy allows one to build into the
restoration algorithm a hierarchical structure, where
data restoration is applied to one singular vector at a
time, progressing downward from more relevant to less
relevant singular vectors. The disadvantage of this ap-
proach is that with each relaxation of the model dimen-
sion L, the feature space Uy (onto which the data are pro-
jected) changes, which makes predicting convergence
properties of the algorithm difficult.

We plan to investigate this approach further, establish
theoretical convergence conditions for the algorithm, and
derive a quantitative rule for optimal subspace selection.
Initial investigations have shown that this strategy can
be fruitful. However, our present results indicate that
even suboptimal heuristic selection of a fixed feature
space dimension L can result in a satisfactory
performance/convergence trade-off for the SVD-POCS al-
gorithm.

C. Algorithm
The iterative algorithm is of the form

fitl = pApfgk — §0 4 P, PIFE (30)

The object domain projector P, which reflects properties
of the hyperspectral data,?® and the V-transform domain
projector PA, which reflects properties of the data collec-
tion system, are applied alternately to the estimated im-
age. The projector P/ limits the spatial-chromatic extent
of the image by trunecating its SVD expansion. The pro-
jector PA constrains the image to have a spectral segment
f? equal to the pseudosolution £*. Convergence of the it-
eration is ensured by convexity of the constraint sets.
The stop criterion for the iteration is given by a minimum
allowed increment in singular values of the iterated ma-
trix F*, e.g., 0.1% of the magnitude of the largest singular
value.

The 8VD--POCS algorithm requires computation of the
constraint operators Pf and P? in the preparation stage
and computation of the product PAP/f* in the iteration
stage.

The constraint operator P’ can be found by application
of SVD directly to F, but since the data matrix is p
X N, where p > N, this method is highly inefficient.
Alternatively, the constraint operator P/ can be found ei-
ther by solving the N X N eigenvalue preblem of the co-
variance matrix
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Rpp = FFT = UAUT,

where A = %2 is a diagonal matrix of eigenvalues and U/
is the eigenvector matrix of FFT, or, equivalently, by solv-
ing the eigenvalue problem of the covariance matrix Rgp,
where F is a two-dimensional matrix formed from f (the
two-dimensional Fourier transform of f) by organization
analogous to Egs. (25) and {26). Since the eigenchroma
matrix U7 is identical for both F and F, the projection op-
erator P/ can be applied directly to F, thereby allowing
the image to stay in the spatial Fourier spacs for the en-
tire iteration. The observation that Ul UT = U U} fur-
ther facilitates the computation by reducing the N X N
matrix-vector multiplication to a 2L set of N-point inner
product computations, where typically L. <€« N. Since for
L < N/2 the computation of U (UTF) is preferable to the
computation of PF, U, rather than P/ is stored in the
preparation stage.

The constraint operator PA requires computation of the
known spectral part £°, as well as the operator P, , which
is used to project the estimated spectral image onto the
null space of A. Computing £ requires the SVD of A,
which is obtained off line, and the multiplication of g by
the pseudoinverse of A. To find the projection matrix
D4, one can use the identity Iy — VIgVH = Vy_(VE_ .,
where Vy_g is formed by replacing the first X columns of
V with zero column vectors. Since N — K = N/4 < N/2
(on average across all spatial frequencies), computation of
Vy_x(Vii_f£) is again preferable to computation of P,f,
and Vy_g rather than P, is stored in the preparation
stage.

The algorithm proceeds as follows.

Precomputation:
+ compute SVD of A.

Computation of projectors:

« compute f? = A'g, pA
e store Vy g,
» compute the covariance matrix K gopo,
¢ find U and 3 of F through } P
eigendecomposition of R poge.
Tteration:

¢ obtain £} = P/f* by computing U (UTF*),
* obtain f£ = P,f* by computing VgV fh),
« obtain £#*1 = £° + £,

The multiplicative complexity of the iteration is

2pNK + 2pNL, {31)

where p = XX, is the number of pixels, N is the number
of resalved wavelengths, K is the number of zero singular
values of A(Z) averaged across all spatial frequencies £,
and L is the dimension of the rank-reduced matrix Fy,.
The algorithm requires storage of the p X N x K matrix
Vy_g. the small L X N matrix U, and the p X N vec-
tor f°. The first term of expression (31) accounts for
computing P,f%, and the second accounts for computing
Pt%, The main computational and storage burden is as-
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sociated with the projector P,. For p = 240° and N
= B4, an average exceution time for a single iteration
eycle on a dual Pentium Pro processor iz 10 =,

5. EXPERIMENTS

We have tested the algorithm on several synthesized and
real datasets. Real datasels were either chromotomo-
graphic sequences of scenes acquired with a hyperspec-
tral camera buill in our laboratory and passed through
both stages of the algorithm (inverse+iteralions), or

A K. Brodzik and J. M. Mooney

sample AVIRIS data, preprocessed to mimic the loss of in-
formation oecurring in the inversion stage and subjected
only to the iteration stage of the algorithm.

To evaluate the performance of the algorithm on eom-
plex data, we used a sample AVIRIS image of Jasper
Ridge, Calif. We selected a 240 x 240 zegment from the
original 512 x 614 image and chose 64 consecutive
frames (starting with the 44th frame) from the sequence
of 224 to fit our processing environment. We prepro-
cessed the initial set of images, subtracting the low
spatial-frequency information by multiplying the set by

Fig. 9. First five eigenimages of Jasper Ridge:  the original AVIRLS sequence (first eolumn), the paeudoinverse reconstruction | secomnd

column ), and the 20th iteration (third eolummn),
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AYA  We then applied the iterative algorithm, using the
first five eigenimages (representing most of the image en-
ergy) to form a reduced-rank data matrix estimate.
Figure 9 illustrates the progression of the first five
eigenimages of the hyperspectral data through the differ-
eni stages of the algorithm: the original set (first col-
umn), the preprocessed set (second column), and the 20th
iterate (third column). Figure 10 shows the correspond-
ing spectral singular vectors. The artifacts evident in
the fourth and fifth eigenimages of the preprocessed data
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(and to a lesser depree in the third eigenimage) largely
disappear in the corresponding eigenimages of the 20th
iterate. Similarly, the singular-value spectrum of the it-
erate approaches that of the original image (Fig. 8). The
rms error of the 20th iterate of the first, second, and third
eigenimages vields twofold, fourfold, and fivefold de-
creases, respectively, as compared with the rms error of
the preprocessed data. Even higher rms crror reduction
rates occur for the lower-order eigenimages.

The second test sequence was obtained with an infra-
red camera built in our laboratory.” The f74 InSh camera
utilizes a 256 » 256 focal-plane array (FPA), and oper-
ates in the 3-5-pm band at 60 frames per second with a
2-ms integration time. The camera collects one frame of
data for each of the 80 prism orientations, uniformly
spaced over 2. We imaged a target of opportunity (a
building) from the laboratory window. The data were ob-
tained on January 12, 1998, at 9.30 am. To minimize
the effects of FPA nonuniformities and stray reflections
from the rotating prism, an additional sequence of data
was recorded with the entrance pupil blocked. The
blocked sequence was used to perform a one-point nonuni-
formity correction on a frame-by-frame hasis.

Figure 2 shows examples of the dispersed images for
six of the 80 orientations. The effect of atmospheric ab-
sorption by CO; at 4.27 um is visible as a horizontal
stripe in the vertically dispersed images. In the recon-
struction (not shown), the solar radiation dominates the
3-um side of the band, and the scene thermal emission
dominates the 5-um side. The atmnspheric absorption
by COy in the 4.2—4.5-um band results in dramatic reduc-
tion of contrast in the spatial image and in strong attenu-
ation of the 4.2-4.5-gm band in the chromatic profiles.
The chromatic end members of the scene are the thermal
spectrum of the background, the thermal spectrum of the
hot segments of the scene, the sclar spectrum reflected
from the bright parts of the building, and the spectrum of
material differences of the brick and painted metal por-
tions of the building.

Figure 11 illustrates the top six eigenimages of the
scene. The upper half of the figure shows eigenimages of
the pseudoinverted data. All six eigenimages contain re-
construction artifacts in the form of high-contrast hales
around the building. These halos are characteristie of
the high-pass filtering and the neise amplification intro-
duced by the pseudoinverse. The lower half of Fig. 11 il-
lustrates the effect of the iterative algorithm on the arti-
facts; the halos have been eliminated. Incidentally, the
eigendecomposition demonstrates the importance of FPA
nonuniformities, which appear in the top-right corner of
the third eigenimage in the lower half.

6. SUMMARY

The objective of this work was improving the gquality of
the chromotomographic image restoration. The objective
was accomplished by introducing a novel object domain
constraint based on the inherent redundancy of the hy-
perspectral data and on the information-compacting abil-
ity of singular-value decompasition. As a result, a highly
efficient and effective image restoration algerithm for pro-
cessing chromotomographic images was obtained. It was
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=

Fig. 11. TFirst six eigenimages of Hanscom: the pseudoinverse (upper half) and the 20th iteration (lower hall ).

demonstrated that the algorithm is able to suppress arti-
facts and noise characleristic of the psendozolution and to
improve resolution of the distinet features present in the
scene, The algorithm allows one to monitor the progress
of iteration in both a quantitative (singular values) and a
gualitative (eigenimages) manner. The computational
cost of the iteration was highly reduced by transforring
the two-dimensional discrete Fourier transform calcula-
tions to the precomputational stage. All three aspects—
performance, tractability, and efficiency—indicate that
the new eonstraints are far superior Lo the standard con-
straints in processing of chromotomographic data.

Most of the gain in the performance of the algorithm
was achieved within the first ten iterations.  Although, at
the present stage of development, processing requires 2-3
min of CPU time, a tenfold processing time improvement
can be expected through algorithm tuning alone. Fur-
ther CPU lime reduction can be accomplished by imple-
mentation of the algorithm in a parallel processing envi-
ronment, which should allow near-real-time processing.
An additional benefit of the algorithm, intrinsic to its it-
erative nature, is that some estimate of the ohject iz avail-

able at all times, successive iterations providing only
higher-fidelity updates.

The main issues to be investigated in the future are the
design of an easily computable eriterion for determining
the degree of hyperspectral model reduction and the vali-
dation of the assumplion that high-order eigenchroma are
shared by different spatial frequency regions of the hyper-
spectral image. The reliability of the model reduction
criterion and eigenchroma error estimates are going to
impact the performance of the algorithm.  Since both the
scene chromatie conlent and the relative importance of
various speciral components can be highly dependent on
the application, characterization of a wide range of hyper-
spectral seenes needs to be performed.
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